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Abstract

Template-Based Testing for Java Just-in-Time Compilers

Zhiqiang Zang, PhD
The University of Texas at Austin, 2024

SUPERVISOR: Milos Gligoric

Compilers are among the most critical components in the software development

toolchain, and their correctness is of utmost importance. A bug in a compiler might

lead to a crash during the translation, an incorrect output (native code does not

match the semantics of the program written by developers), or even expose security

vulnerabilities in the generated code.

Compiler developers have written thousands of tests, including programs in

the compiler’s target programming language, as to check for correctness. Although

manual tests nicely capture developers’ intuition of what programs are expected to

trigger corner cases in a compiler, it is time-consuming to write a large number of

such tests.

Numerous automated compiler testing techniques exist, aiming to generate ex-

tensive tests. They broadly fall into two categories: grammar-based methods, which

build tests from grammar rules, and mutation-based techniques, which build tests by

mutating seed programs. However, they offer limited room for compiler developers

to embed their domain knowledge into the testing process. Particularly, these tools

are ineffective in discovering bugs in just-in-time (JIT) compilers. JIT compilers,

dynamically (i.e., at runtime) rewrite parts of programs to optimize program execu-

tion based on profiling data. Testing such compilers requires carefully crafted inputs
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that trigger JIT compilation and provide challenging code snippets for optimizing

compilers.

This dissertation presents two frameworks to combine developers’ domain

knowledge (via templates) with automated testing to detect bugs in JIT compilers.

The dissertation first introduces JAttack, a framework that enables template-

based testing for compilers. Using JAttack, a developer writes a template program

that describes a set of programs to be generated and given as test inputs to a com-

piler. Such a framework enables developers to incorporate their domain knowledge on

testing compilers, giving a basic program structure that allows for exploring complex

programs that can trigger sophisticated compiler optimizations. A developer writes

a template program in the host language (Java) that contains holes to be filled by

JAttack. JAttack generates programs by executing templates and filling each

hole by randomly choosing expressions and values, available within the search space

defined by the hole. We demonstrate JAttack’s capabilities in helping test Java

JIT compilers. Using JAttack, we have found seven bugs in HotSpot that were

confirmed and fixed by Oracle developers. Five of them were previously unknown,

including two unknown CVEs (Common Vulnerabilities and Exposures).

This dissertation then introduces LeJit, an overarching framework wrapping

JAttack for testing Java JIT compilers. LeJit automatically creates template

programs from existing Java code by converting expressions to holes. To make created

templates executable, LeJit also generates necessary glue code that creates instances

used as arguments to methods in templates. To obtain instances of complex types

(i.e., non-primitive types) needed for created templates, LeJit captures instances of

various types during testing of methods from which templates are to be extracted.

Using LeJit, we have found 15 bugs in popular Java JIT compilers, including five

bugs in HotSpot, nine bugs in OpenJ9, and one bug in GraalVM. All of these bugs

have been confirmed by Oracle and IBM developers, 11 of which were previously

unknown, including two unknown CVEs.
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Chapter 1: Introduction

Compilers play a pivotal role in the software development process, as indis-

pensable components of the software development toolchain. They hold a position of

significant trust within the software development community, emphasizing the criti-

cality of their correctness. A single bug within a compiler can precipitate a cascade

of issues, potentially resulting in program crashes [42], the generation of erroneous

output that deviates from the intended program semantics [95], or even the exposure

of security vulnerabilities within the resultant code [128].

However, the correct implementation of compilers is never easy because of their

complexity. A typical compiler consists of a number of interacting components, e.g.,

lexer, parser, optimizer, code generation, etc [2]. The correct implementation requires

precise understanding of all these components. Moreover, the input and output of

compilers are programs that can have complex structures. Thus, reasoning about the

behavior of a compiler is all but trivial.

The difficulty of implementing a compiler brings unique challenges to testing

the implementation. First, the semantic richness of the input and output makes

compilers usually lack a formal specification. While the high-level goal, which is to

translate a program in the source language into a semantics-preserving program in

the target language, the low-level details are usually unspecified. For example, when

to apply what optimizations is rarely specified, making it difficult to check whether

a compiler applies all desired optimizations. Second, the extremely large input and

output domains allow a small change in the input program to make a huge difference

in the expected behavior of the compiler. Thus, meticulously designed inputs are

necessary to test desired parts of compilers. For example, changing a single value

in the loop condition may cause the compiler to stop performing loop optimizations.

Third, it is not trivial for a program to reach deeper components of compilers, such

as optimizer or code generation, because the program has to pass all the checks in
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the lexer and parser. Therefore, non-trivial work, e.g., following language grammars,

is required to create these programs if deep testing of compilers is desired.

Compiler developers have written thousands of tests, including programs in

the compiler’s target programming language, as to check for correctness [50, 86, 96].

While these hand-written tests nicely capture developers’ intuition into scenarios that

may expose corner cases, the process of generating a substantial quantity of such tests

is notably time-consuming. A prior study showed that close to 50% of developers’

time is spent on testing [37].

As a result, researchers and practitioners have developed several automated

techniques for testing compilers, namely generating a large number of tests to feed to

a compiler as inputs. Traditionally, the compiler testing landscape has predominantly

revolved around static compilers, e.g., well known GCC, LLVM, and javac. Testing

tools such as Csmith [139] and Hephaestus [22] have effectively discovered bugs within

these static compilers [140, 141]. However, these testing tools, effective as they may

be in their domain, fall short when it comes to the intricate task of identifying bugs

within just-in-time (JIT) compilers [8].

JIT compilers, JIT for short, operate dynamically, rewriting parts of pro-

grams at runtime to optimize their execution based on profiling data [8]. This unique

functionality demands a specialized approach to testing, one that involves crafting

meticulously designed inputs capable of triggering JIT compilation and presenting

complex code structures that challenge optimizing compilers.

Recent compiler testing techniques, including JIT compiler testing, mainly

fall in two categories: grammar-based [63, 84, 139, 143] and mutation-based [32, 33,

131, 153]. In the former category, programs are generated from scratch following

the production rules specified in the language grammar. In the latter category, the

process usually starts with initial seed programs that are subsequently genetically

mutated. While existing approaches are valuable, they do have shortcomings. They

provide limited ways for compiler developers to fully integrate their expertise and
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Extractor JAttack JIT DiffJava Projects Bugs
Templates Generated

Programs

LeJit

Figure 1.1: The overview of JAttack and LeJit.

domain knowledge into the testing process.

We believe that integrating developers’ domain knowledge into automated test-

ing can significantly enhance current JIT compiler testing techniques. This disserta-

tion presents two primary research endeavors with this objective: (1) a template-based

compiler testing framework that empowers developers to write templates and gener-

ates from these templates numerous concrete programs as test inputs to compilers,

and (2) a unified automated testing framework that streamlines creation of templates.

Figure 1.1 shows the overview of JAttack and LeJit. First, we introduce

JAttack, a framework that enables compiler testing using templates. Using JAt-

tack, a developer writes a template program (template for short) that outlines a

collection of concrete programs to serve as test inputs to a compiler. Unlike prior

work, our framework enables developers to express richer manual tests for compilers.

Our design of a template effectively captures the developers’ intuition, in very much

the same way as hand-written tests, but it goes a step further by offering flexibility

to express variants of those tests that can be obtained by executing the templates.

(Figure 1.2 shows an example template, which is discussed in detail in Section 2.2.)

JAttack complements existing automated compiler-testing techniques by allowing

developers to use their expertise to provide a structure of a program on which JAt-

tack can further explore.

In JAttack, a developer writes a template in the host language (Java), which

contains holes, i.e., placeholders, to be filled by JAttack. Each hole is written in a

domain-specific language (DSL) fully embedded in the host language. Namely, we do

not change the syntax, compiler, or runtime environment of the host language. The

DSL we defined is a collection of APIs that enables developers to specify characteris-
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1 import static jattack.Boom.*;

2 public class C {

3 static int s1;

4 static int s2;

5 @Entry

6 public static int m() {

7 int[] arr1 = { s1++, s2, intVal().eval(), intVal().eval(),

8 intVal().eval()};

9 for (int i = 0; i < arr1.length; ++i)

10 if (logic(relation(intId(), intId(), LE),

11 relation(intId(), intId(), LE),

12 AND, OR).eval())

13 arr1[i] &= arithmetic(intId(), intId(), ADD, MUL).eval();

14 return 0; } }

Figure 1.2: An example of a template. One generated program from this template
revealed a bug in the HotSpot JIT compiler.

tics of each hole they want explored in a template. Each API call defines the search

space for the hole, i.e., a set of possible expressions and values. The JAttack’s API

ensures that each hole can be type-checked by the host compiler.

JAttack repeatedly executes the template (up to N times) to fill each hole

and as a result generates a concrete program. During the execution, when JAttack

encounters a hole the first time, JAttack randomly chooses expressions and values

available within the search space defined by the hole. Once the hole is filled, the filled

expression or value is used until the end of the current execution. Next, to detect

any bugs related to JIT compilers, each generated program is executed N times using

different Java JIT compilers, potentially detecting bugs via differential testing [87].

The benefit of JAttack, or template-based compiler testing, is that devel-

opers have full control of the space that should be tested and the way programs

should evolve. However, JAttack requires substantial developers’ engagement, as

both template program design and hole search space definition are done manually.

To automate Java JIT compiler testing by using JAttack and providing tem-

plates automatically, we introduce another framework that is built around JAttack,

dubbed LeJit, for automatically creating template programs from existing code.

17



LeJit creates templates by rewriting expressions to holes, as well as generating nec-

essary glue code (e.g., code that creates instances of non-primitive types on which

methods can be invoked) to make those templates executable. Execution of created

templates, which is done by JAttack, randomly fills the holes to create concrete

programs that are used as inputs for Java JIT compiler testing.

LeJit is designed to create a template from any existing method. One of the

key challenges was to enable templates for methods that accept instances of complex

types as arguments (including an instance on which the method is to be invoked). Our

key insight in this direction is to capture instances of various types during testing of

methods from which templates are to be extracted. These tests can be either existing

manual tests or automatically generated unit tests.

Therefore, when compared to other automated testing techniques for JIT com-

pilers, LeJit sits in between mutation-based techniques and template-based tech-

niques. LeJit automatically creates templates from any existing code and JAttack

uses the created templates to generate concrete programs to test Java JIT compilers.

The key contributions of this dissertation include:

? We introduce JAttack, the framework for templating tests for compilers. JAt-

tack is designed to complement manual tests and blend developer’s intuition (via

templates) and automated testing to increase likelihood to detect bugs in Java

JIT compilers. We introduce a programming and an execution model to integrate

templates entirely in the host language (Java), without changing the syntax or the

runtime environment. Templates are like hand-written programs with holes; each

hole, expressed using a DSL, specifies values that the hole can take. The holes

are filled with random values through dynamic execution of templates. We im-

plemented JAttack for the Java programming language and applied it to testing

Java JIT compilers.

? We designed and implemented LeJit, a framework for creating templates from ex-

isting code by converting expressions into holes and capturing instances of complex
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types during test execution. Captured instances enable execution using JAttack

of templates that produce concrete programs used as inputs for compiler testing.

We have implemented LeJit for Java and connected it with JAttack. We have

also developed several variants of LeJit to help us understand the benefits of

templates and captured instances used as values for arguments.

? We have performed extensive evaluation of JAttack and LeJit. We have written

23 template programs using the DSL provided by JAttack. We used JAttack to

test the HotSpot JIT compiler and discovered seven bugs, including two unknown

CVEs (Common Vulnerabilities and Exposures). We also used LeJit to automat-

ically extract 143,195 templates from ten open-source Java projects on GitHub.

We then used LeJit to generate 886,178 concrete programs. We have discovered

15 additional bugs in popular Java JIT compilers, including five bugs in HotSpot,

nine bugs in OpenJ9, and one bug in GraalVM, 11 of which are previously un-

known, including two unknown CVEs. Table 1.1 shows all the detected bugs using

JAttack and LeJit. Additionally, we compared JAttack and LeJit with Java*

Fuzzer [9], JITfuzz [136], and JavaTailor [153], the state-of-the-art tools for testing

Java runtime environments. Our results show that LeJit is complementary to

the state-of-the-art techniques, which did not discover any of the bugs reported by

JAttack or LeJit.

? Both JAttack and LeJit are open source, and they are publicly available at

https://github.com/EngineeringSoftware/jattack and https://github.com/

EngineeringSoftware/lejit, respectively.

This dissertation brings a novel template-based approach for testing JIT compilers

and a unified framework for automating the entire process. This shows the power of

combing developers’ insights with automated testing, and opens up opportunities for

future compiler testing using templates.
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Table 1.1: Detected bugs in HotSpot, OpenJ9 and GraalVM using JAttack and
LeJit.

JVM Bug ID Type JDK Versions CVE Duplicates
Source of
Templates

GraalVM GR-45498 Diff 17, 20 - - Extracted

HotSpot

JDK-8239244 Diff 8, 11, 13 CVE-2020-14792 - Hand-written
JDK-8258981 Crash 9, 10, 11, 15, 16 - JDK-8250609 Hand-written
JDK-8271130 Crash 8, 11, 16, 17 CVE-2022-21305 - Extracted
JDK-8271276 Crash 16, 17, 18 - - Extracted
JDK-8271459 Diff 8, 11, 16, 17, 18 - - Extracted
JDK-8271926 Crash 11, 16 - JDK-8268362 Extracted
JDK-8297730 Diff 9, 11, 17, 18, 19, 20, 21 - - Extracted
JDK-8301663 Diff 18, 19, 19.0.2 - JDK-8288064 Extracted
JDK-8303946 Diff 8, 11, 17, 19, 20, 21 - - Extracted
JDK-8304336 Diff 17, 19, 20, 21 CVE-2023-22044 - Extracted
JDK-8305946 Crash 17, 19, 20, 21 CVE-2023-22045 - Extracted
JDK-8325216 Crash 17, 18, 19, 20, 21 - JDK-8319793 Extracted

OpenJ9

17066 Crash 8, 11, 17, 18 - - Extracted
17129 Diff 8, 11, 17, 18 - - Extracted
17139 Diff 8, 11, 17, 18 - - Extracted
17171 Crash 11, 17, 18 - - Extracted
17212 Crash 8, 11, 17, 18 - 15363 Extracted
17249 Diff 8, 11, 17, 18 - - Extracted
17250 Diff 17, 18 - - Extracted
18802 Crash 8, 11, 17, 21 - 17045 Extracted
18803 Crash 11, 17, 21 - - Extracted
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Chapter 2: Compiler Testing using Template Java

Programs

In this chapter, we present JAttack, a framework that enables template-

based testing for compilers. Using JAttack, a developer writes a template program

that describes a set of programs to be generated and given as test inputs to a com-

piler. Such a framework enables developers to incorporate their domain knowledge on

testing compilers, giving a basic program structure that allows for exploring complex

programs that can trigger sophisticated compiler optimizations. A developer writes a

template program in the host language (Java) that contains holes to be filled by JAt-

tack. Each hole, written using a domain-specific language, constructs an extended

abstract syntax tree (eAST). An eAST defines the search space for the hole, i.e., a set

of expressions and values. JAttack generates programs by executing templates and

filling each hole by randomly choosing expressions and values (available within the

search space defined by the hole). Additionally, we introduce several optimizations

to reduce JAttack’s generation cost. While JAttack could be used to test various

compiler features, we demonstrate its capabilities in helping test Java JIT compilers,

whose optimizations occur at runtime after a sufficient number of iterations over the

same code. Using JAttack, we have found seven critical bugs that were confirmed

by Oracle developers. Five of them were previously unknown, including two unknown

CVEs. JAttack shows the power of combining developers’ domain knowledge (via

templates) with random testing to detect bugs in JIT compilers. 1

1Parts of this chapter are published at ASE 2022 [144] and ICSE DEMO 2023 [146]. I led the
design, implementation, and evaluation of the system, as well as analyzing the data and writing
papers.
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2.1 Introduction

JAttack is a framework that enables compiler testing using templates. Using

JAttack, a developer writes a template program that describes a set of concrete

programs to be used as inputs to a compiler. Unlike prior work [32, 33, 63, 84, 131,

139, 143, 153], our framework enables developers to express richer manual tests for

compilers. Our design of a template captures the developers’ intuition in very much

the same way as manual tests but provides an opportunity to express variants of

those tests that can be obtained by testing the templates. The goal is similar to

parameterized unit testing [129], where developers write unit tests that encapsulate

some features they want to test in their code but have parameters that a backend

framework explores as to obtain deeper testing around the insights the developers

initially provide. Unlike with mutation-based fuzzers, compiler developers can use

templates to specify exactly how to generate program variants. Figure 2.1 shows an

example template, which is discussed in detail in Section 2.2. JAttack complements

existing automated compiler-testing techniques that can provide a structure of a

program on which JAttack can further build templates.

In JAttack, a developer writes a template in the host language (Java), which

contains holes to be filled by JAttack. Each hole is written in a domain-specific

language embedded in the host language, i.e., we do not change the syntax, compiler,

nor runtime environment of the host language. We define the DSL as a set of APIs

that allow developers to specify characteristics of the hole they want explored in a

template, where each API call produces an instance of an extended abstract syntax

tree (eAST); an eAST node bounds the search space for the hole, i.e., defines a

set of possible expressions and values. As an example, consider the following API

call that defines a hole: relation(intVal(), intVal(), GT, LT).eval(), which

represents a logical relation between two integer literals (each can take any value

between Integer.MIN VALUE and Integer.MAX VALUE) using either > (GT) or < (LT)

relational operators; this hole evaluates to a boolean. Using the JAttack’s API,
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each hole can then be type-checked by the host compiler.

JAttack is useful for augmenting testing for many complex compiler features

as it leverages the developer insights from the provided templates. For our evalua-

tion, we focus specifically on testing JIT compilers. Unlike traditional ahead-of-time

compilers that translate a program into native code prior to deployment [2], JIT com-

pilers translate the program during execution [8]. Certain optimizations only occur

after executing specific program structures a sufficient number of times.

JAttack takes two inputs: (1) a template, and (2) an iteration count (N), i.e.,

the number of times each generated program will be executed in a loop to ensure that

JIT compilation is triggered. JAttack generates a program by repeatedly executing

the template (up to N times) and filling each hole, when the hole is reached the

first time, by randomly choosing expressions and values available within the search

space defined by the hole. (In theory, a template can be exhaustively explored, but

it is generally not feasible.) Next, to detect any JIT compiler bugs, each generated

program is executed N times using different JIT compilers, potentially detecting bugs

via differential testing [87].

We also introduce three optimizations into JAttack to reduce the generation

cost. The first optimization, early stopping, involves stopping after detecting that

further generation would not fill any more holes. The second optimization, hot filling,

dynamically transforms the template when a hole is reached the very first time; the

API call is transformed into the concrete expression that the call would produce. The

final optimization, eager pruning, uses a modern constraint solver (Z3 [39]) to detect

holes for conditional statements (e.g., if) that always evaluate to a constant value.

To demonstrate JAttack’s capabilities in testing JIT compilers, we wrote 23

templates. We focused on interesting Java language features and took inspiration from

existing tests for the Java compiler. We report the cost of generation and execution,

as well as benefits of our optimizations; our optimizations reduce the generation time

by 99.50%. We used the generated programs as inputs to multiple commercial JIT
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compilers, including the HotSpot JIT compiler from Oracle JDK. Using just our own

templates, we were able to discover two bugs in the HotSpot JIT compiler. We also

extracted 5,419 templates from 77 open-source Java projects by translating random

code into holes. We discovered five more bugs in the HotSpot JIT compiler using

these extracted templates. All the seven bugs (see Table 1.1) have been confirmed

and fixed by Oracle developers, including two previously unknown CVEs.

The key contributions from the JAttack work include:

• Framework. We introduce JAttack, the framework for templating tests for

compilers. JAttack is designed to complement manual tests and blend developer’s

intuition (via templates) and random testing to increase likelihood to detect bugs

in Java JIT compilers.

• Programming and execution models. We introduce a programming and an ex-

ecution model to integrate templates entirely in the host language (Java), without

changing the syntax or the runtime environment. Templates are like hand-written

programs with holes; each hole, expressed using a DSL, builds an eAST that spec-

ifies values that the hole can take (i.e., defines a search space). We introduce three

optimizations that are applied when generating programs from templates.

• Use case. We implemented JAttack for the Java programming language and ap-

plied it to testing Java JIT compilers. We evaluated JAttack by writing 23 tem-

plate programs, and extracting 5,419 templates from 77 open-source Java projects.

Our results show that the optimizations substantially reduce test generation time,

making JAttack practical. Furthermore, we discovered seven bugs in the HotSpot

JIT compiler, including two previously unknown CVEs.

JAttack is available at https://github.com/EngineeringSoftware/jattack.
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1 import static jattack.Boom.*;

2 public class C {

3 static int s1;

4 static int s2;

5 @Entry

6 public static int m() {

7 int[] arr1 = { s1++, s2, intVal().eval()¶, intVal().eval()·,

8 intVal().eval()¸ };

9 for (int i = 0; i < arr1.length; ++i)

10 if (logic(relation(intId(), intId(), LE), relation(intId(), intId(), LE),

11 AND, OR).eval()¹)

12 arr1[i] &= arithmetic(intId(), intId(), ADD, MUL).eval()º;

13 return 0; } }

(a) An example of a template.

1 import static jattack.Boom.*;

2 public class C {

3 static int s1;

4 static int s2;

5 @Entry

6 public static int m() {

7 int[] arr1 = { s1++, s2, 45350238¶, 681339300·, 125652422¸ };

8 for (int i = 0; i < arr1.length; ++i)

9 if (arr1[3] <= s2 || s2 <= arr1[2]¹)

10 arr1[i] &= arr1[1] * s1º;

11 return 0; } }

(b) An example of a generated program.

Figure 2.1: An example of a template and one generated program from the template.

2.2 Example

Figure 2.1a shows a template program that we wrote while developing JAt-

tack for Java. Our motivation for this template was to exercise Java JIT compiler

optimizations for programs that use local arrays and static variables. It is important

to note that every template for JAttack is a valid Java program. This template uses

static methods (e.g., logic) that are defined in the jattack.Boom class. As such,

the Java compiler can also type-check the template.

The template contains five holes representing places where JAttack should

generate expressions, filling them in to create a concrete generated program. Three
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holes are between lines 7 and 8, one between lines 10 and 11, and one on line 12 (in

Figure 2.1a). The number of holes is equal to the number of eval invocations. The

eval invocation as well as the type information of the expression calling the eval

allows JAttack to tell a hole from actual code.

The first three holes are defined by the intVal method calls; each call to

intVal represents a hole that will be filled by an integer literal. Note that with-

out any arguments, intVal produces an integer between Integer.MIN VALUE and

Integer.MAX VALUE. The next hole (lines 10-11) defines a logical “and” or “or” ex-

pression (logic with the AND and OR arguments) between two relational expressions.

Each relational expression (relation) connects two free integer variables intId,

which can be s1, s2, i, or any element of arr1 (the array index is randomly picked

between 0 and the size of the array) at this point, using the <= operator (LE). The

final hole (line 12) is an arithmetic expression (arithmetic) of two free integer vari-

ables, which are combined using either a + or a ∗ operator (ADD or MUL). We describe

more details on what type of expressions we support for holes along with our API in

Section 2.3.

JAttack generates programs through an execution-based model. In other

words, JAttack fills the holes in a template after executing the template. (Unlike

static generation, an execution-based model prunes the search space by only filling

holes reached during execution. See Section 2.6.1 for details.) A template must have a

template entry method, annotated with @Entry as shown in the example (method m).

When the execution reaches any unfilled hole, JAttack generates a valid expression

for that hole based on the used API calls. When all reachable holes are filled (see

Section 2.3.3 for how this is determined), JAttack outputs the corresponding gen-

erated program. JAttack then calls the template entry method again to generate

the next program up to the specified maximum number of programs. An example of

a generated program that JAttack outputs for the template in Figure 2.1a is shown

in Figure 2.1b. The numbered circles in the generated program correspond to the

same ones next to holes in Figure 2.1a.
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Finally, to detect any bugs related to JIT compilers, JAttack executes each

generated program starting from the same entry method a large number of times using

different JIT compilers, potentially detecting bugs via differential testing [87]. The

large number of re-executions is necessary as to trigger JIT compiler optimizations.

In Java, a JVM starts executing a program with an interpreter and monitors the

execution for “hot” code sections, i.e., code that is frequently executed. The JIT

compiler then optimizes “hot” sections. Through repeated executions of the generated

method m, the generated program shown in Figure 2.1b revealed a bug in the HotSpot

JIT compiler, crashing the JVM.

2.3 JAttack Framework

JAttack introduces test templating, a way to define a set of programs used

for testing compilers. We designed JAttack guided by the following requirements:

(1) developers decide where the holes should be placed and bound the search space

of each hole, and (2) the domain-specific language for writing holes is non-intrusive,

i.e., it requires no changes to the host compiler.

In this section, we describe our programming and execution models (Sec-

tion 2.3.1), implementation for Java (Section 2.3.2), the generation procedure (Sec-

tion 2.3.3), the optimizations for generation (2.3.4), and the overall JIT compiler

testing procedure (Section 2.3.5).

2.3.1 Programming and Execution Models

We define the syntax and operational semantics of a simple imperative lan-

guage with an extension to support templates. Note the language shown here includes

only integer type for ease of presentation; we greatly extend the scope in our imple-

mentation for Java. The simple imperative language and extensions represent the

foundations for supporting templates for general imperative languages, and our im-

plementation in Java, described in later sections, is based on these extensions.
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Stmts := (LABEL:)? Stmt ";" Stmts | ε
Stmt := AssignStmt | IfStmt | GotoStmt | halt

AssignStmt := ID "=" Exp

IfStmt := "if" "(" Exp ")" LABEL

GotoStmt := goto LABEL

Exp := ExpBasic | "[[" ExpAlt "]]"
ExpBasic := ExpBasic Op Operand | Operand

ExpAlt := ExpAlt "," ExpBasic | ExpBasic

Operand := ID | NUM | "[[c]]" | "[[v]]"
Op := "+" | "-" | "||" | "&&" | "==" | "!=" | "<"

Figure 2.2: Syntax for an imperative language with holes.

Syntax. Figure 2.2 defines the syntax of the simple language. A program is a

sequence of zero or more statements. Each statement is either an assignment, condi-

tional, goto, or halt. An expression in a program can combine relational, arithmetic,

and logical operators. On top of these basic imperative features, the language also

introduces the concept of a hole, denoted with [[]]. These holes can be used around

a sequence of comma-separated (ExpAlt in the figure) expressions, or they can be

around individual operands, where [[c]] represents a hole for a literal/constant and [[v]]

represents a hole for a variable.

Semantics (core language). Valid programs can only use integer literals. We

define the state of a program with the following configuration: 〈pc, I,M,L〉, where

pc is the program counter (initially 0), I is the instruction memory (i.e., mapping

from the program counter to statements or expressions), M is the main memory (i.e.,

mapping from identifiers to integer values), and L is a map from labels to indices

in I. Prior to the execution, statements and expression indices are placed into I

by performing a pre-order traversal of the program’s abstract syntax tree (the first

statement is at index 0). Also, L is initialized to map each label to the appropriate

index in I. We also use the following operations: (1) map lookup (val), and (2) map

update [val/ ].

Figure 2.3 shows the operational semantics of the language. For simplicity,
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ASSIGN EXP:
〈pc+ 1, I,M,L〉exp⇒ 〈pc′, I ′,M,L〉v

〈pc, I,M,L〉id = exp⇒ 〈pc′, I ′,M,L〉id = v

ASSIGN VAL:
M ′ = M [v/id]

〈pc, I,M,L〉id = v ⇒ 〈pc+ 1, I,M ′, L〉I(pc+ 1)

GOTO:
〈pc, I,M,L〉goto l⇒ 〈L(l), I,M,L〉I(L(l))

IF EXP:
〈pc+ 1, I,M,L〉exp⇒ 〈pc′, I ′,M,L〉v

〈pc, I,M,L〉if(exp) N ⇒ 〈pc′, I ′,M,L〉if(v) N

IF VAL:
pc′ = (v == 0) ? pc+ 1 : L(l)

〈pc, I,M,L〉if(v) l⇒ 〈pc′, I ′,M,L〉I(pc′)

C HOLE:
val = alt(range(MIN,MAX)) I ′ = I[val/pc]

〈pc, I,M,L〉[[c]]⇒ 〈pc, I ′,M,L〉val

V HOLE:
id = alt(identifiers(M)) I ′ = I[id/pc]

〈pc, I,M,L〉[[v]]⇒ 〈pc, I ′,M,L〉id

E HOLE:
e = alt([e1, e2, ...., en]) I ′ = I[e/pc]

〈pc, I,M,L〉[[e1, e2, ..., en]]⇒ 〈pc, I ′,M,L〉e

Figure 2.3: Semantics for the simple language from Figure 2.2.

the rules do not include error handling. The assignment statement simply updates

the value of a variable in memory. The goto statement unconditionally jumps to the

statement with the specified label. The conditional statement evaluates the expression

and then jumps if the expression evaluates to true (val 6= 0). We do not show the

rules for computing basic expressions, as we assume the same semantics as in the C

programming language. The halt statement terminates the execution.

Semantics (template language). We define several utility functions for the tem-

plate language: (1) identifiers(M) - returns a list of available variable names in

M at the point of an invocation, (2) range(x, y) - returns a list of integers between x

and y, and (3) alt([...]) - takes a sequence as input and outputs one of its elements.

A hole for an integer literal (C HOLE) evaluates to an integer literal and

rewrites itself to that literal. A hole for a variable (V HOLE) evaluates to an avail-

able identifier and rewrites itself to that identifier. Finally, a hole for an expression

(E HOLE) evaluates to one of the given expressions (and rewrites itself to that ex-

pression). Note that the rewrite rules are such that the entire hole is replaced with
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the choice of a concrete expression upon execution, so the hole no longer exists after

the first evaluation, ensuring that each hole evaluates only to a single expression per

execution. The program in I at the end of execution is the generated program in the

same language as the original template.

Filling a hole. Given a list of candidates for a hole, we need to explore different

candidates every time we execute the program, which would in turn rewrite the

template into new concrete programs that we can later use for testing compilers.

While one can try and systematically explore all the possible candidates, the search

space can be incredibly large (e.g., for [[c]] the range of possible integers go from MIN to

MAX), especially when considering combinations of candidates chosen across all holes

in the program.

For this work, we choose candidates for a hole randomly. Random exploration

has been found effective in prior work [84, 103, 139, 143]. We keep re-executing

the template to rewrite into concrete programs up until we reach a specified limit for

number of generated programs. Note that each execution of a template is independent

of other executions, i.e., any modifications to the template during one run is not

observable in another run.

Example. Consider the following example in our language: s1 = [[c]]; s2 = [[c]]; if

([[v]] < [[v]]) l9; l9: halt;. Executing this template once might generate: s1 =

45350238; s2 = 681339300; if (s1 < s2) l9; l9: halt;. Another execution

can lead to a different generated program: s1 = 125652422; s2 = 23297; if (s2

< s2) l9; l9: halt;.

2.3.2 JAttack Implementation for Java

We implement the semantics of JAttack for the host Java programming

language. To support the concept of holes while integrating it into Java, we introduce

a set of API methods that construct holes.

Figure 2.4 shows a subset of the API we provide. This API represents a DSL
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BoolVal boolVal();

IntVal intVal(int min, int max);

IntVal intVal();

BoolId boolId(String... names);

IntId intId(String... names);

...

<T> RefId<T> refId(Class<T> type, String... names);

<T extends Number> BAriExp<T> arithmetic(Exp<T> left, Exp<T> right, Op... ops);

<T extends Number> RelExp<T> relation(Exp<T> left, Exp<T> right, Op... ops);

LogExp logic(Exp<Boolean> left, Exp<Boolean> right, Op... ops);

...

<T> ExprStmt exprStmt(Exp<T> exp);

IfStmt ifStmt(Exp<Boolean> cond, Stmt thenStmt, Stmt elseStmt);

WhileStmt whileStmt(Exp<Boolean> cond, Stmt body);

...

<T> Exp<T> alt(Exp<T>... exps);

Stmt alt(Stmt... stmts);

Figure 2.4: API for writing holes; a call to any of the methods in the API instantiates
an eAST node.

that maps to our simple imperative language from Figure 2.2 and 2.3. All methods in

the API return an instance of a node rooting an eAST. An Exp<Integer> node corre-

sponds to an expression (evaluating to integer due to Java typing, so Exp<Boolean>

is the same for boolean type). An IntVal (extends Exp<Integer>) node and an

IntId (extends Exp<Integer>) node correspond to an integer literal and variable,

respectively. We define BoolVal and BoolId to correspond to the boolean type for

Java. BAriExp<Integer> (extends Exp<Integer>) is for binary arithmetic expres-

sions, while RelExp (extends Exp<Boolean>) and LogExp (extends Exp<Boolean>)

are for relational and logical expressions. These nodes are therefore placeholders

for the actual, concrete expressions to be generated at runtime, so they represent

holes to be filled. For example, an IntVal node created using the method intVal

represents [[c]], a hole that can evaluate to any integer from Integer.MIN VALUE to

Integer.MAX VALUE. We also provide an intVal API that can specify the range of in-

teger values, and an intId API that can enumerate available variables (at any point)

by analyzing bytecode, when no variable is specified.
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While specific API methods can create corresponding nodes, e.g., arithmetic

for BAriExp, we also provide method alt that can choose from a provided list of

Exp<Integer> or Exp<Boolean> nodes, which corresponds to the semantics for an

expression hole (E HOLE) in our simple imperative language.

Although we illustrate the implementation of JAttack using int and boolean,

we support any other primitive type, e.g., long and double, or any reference type.

For instance, refId can enumerate available variables (at any point) with type T

that can be specified using argument Class<T> type, e.g., refId(String.class)

returns a RefId<String> node corresponding to any available String variables at

this execution point. We provide API methods to create statements as well, such as

exprStmt, ifStmt and whileStmt. Furthermore, one can extend our implementation

to include more language constructs in Java, as along as they can be represented in

an eAST.

As an alternative, we originally designed our API to use a list of concrete

Java expressions to choose from, e.g., alt(i++, j++). However, these expressions

would get executed and result in side-effects, and the final execution would not match

executing the corresponding generated program with the concrete expressions substi-

tuting for the hole, so we abandoned that direction.

Instead, when using eAST nodes, we do not actually generate an expression

to fill a hole until the eval method is invoked on the node, e.g., intVal().eval().

Only after calling eval does a concrete node get generated for that hole. Once gen-

erated, the node is interpreted to compute the result of the expression. Furthermore,

all subsequent calls to the same API method (from the same location) will always

return the same node. For our Java implementation, we define a hole to be where

the developer calls eval for a built eAST. The eAST constructed for an API call

represents a range of candidates to fill the hole. As an example, consider the hole

specified by the logic call (lines 10-11 in Figure 2.1a). Executing the logic method

returns a root node of an eAST, illustrated in Figure 2.5. Candidates for the hole
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LogExp

RelExp

IntId IntId

RelExp

IntId IntId

&&, ||

<= <=

Figure 2.5: eAST corresponding to logic hole from Figure 2.1a.

are obtained by recursively obtaining candidates for nodes in subtrees and combining

them together.

In this example, the RelExp nodes would result in candidates that combine

choice of integer variables combined with the specified operators (just LE in the ex-

ample); the top-level LogExp node would use the returned candidates and combine

with the specified AND or OR to create the final candidates. This eAST structure

corresponds to an expression hole in our imperative language, namely the following:

[[[[v]] <= [[v]] && [[v]] <= [[v]], [[v]] <= [[v]] || [[v]] <= [[v]]]].

Unlike our simple imperative language, our API provides syntactic sugars to describe

a large set of similar candidates without having to enumerate all of them by specifying

multiple operators at once (see Op... ops in Figure 2.4).

2.3.3 Generation Procedure

Figure 2.6 shows the overall algorithm for JAttack’s Generate function that

executes a template repeatedly to generate concrete program instances. The input to

Generate is a template T and the number of programs to generate M . The output

is a set of generated programs G.

Function Generate starts by initializing the empty set of generated programs

G and then capturing the initial global state of the template T into variable S (line 6).

We initially supported capturing static fields with primitive types as the global state;

later we extended JAttack to support reference types [12, 13] (Section 3.3.3). We

capture the global state to be used later when generating programs, ensuring the

33



1: Input: template program T
2: Input: number of programs to generate M
3: Output: set of generated programs G
4: function Generate(T , M)
5: G← ∅
6: S ← CaptureGlobalState(T )
7: entryMeth ← FindEntryMethod(T )
8: num← CountHoles(T )
9: repeat

10: resetGlobalState(S)
11: P ← RunTemplate(T, entryMeth, num)
12: G← G ∪ {P}
13: until |G| = M
14: return G
15: Input: template program T
16: Input: entry method entryMeth
17: Input: number of holes num
18: Output: generated program P
19: function RunTemplate(T, entryMeth, num)
20: H ← {}
21: seenStates← ∅
22: Q← T
23: for i ← 1 to MAX NUM ITERATIONS do
24: H ′ ← ExecEntryMethod(entryMeth, Q)
25: H ← H ∪H ′

26: if |H| = num then break

27: R← CaptureGlobalState(Q)
28: if R ∈ seenStates then break
29: seenStates← seenStates ∪ {R}
30: Q← HotFill(Q,H)
31: Q← RemoveDeadCode(Q,H)

32: return ApplyFilledHoles(T,H)

Figure 2.6: Generation algorithm.

generation of each (out of M) program is done from the clean state. (We use the

Java reflection mechanism to capture the state.) Additionally, Generate finds the

template entry method (line 7), which is the entry point for executing T (in our Java

implementation, this is the method annotated with @Entry), and also counts the total

number of holes that should be filled in the template (line 8).

Next, Generate repeatedly calls RunTemplate, which executes the template,

resulting in a generated program that is added to G. Assume that a template always

34



terminates, which can be guaranteed through carefully specifying the search space

for the holes in conditions, the overall loop in Generate ends when the number of

uniquely generated programs has reached the maximum necessary number M . We

set a timeout, for RunTemplate, as it might not be feasible to generate the specified

number of unique programs.

Before calling RunTemplate in each iteration, Generate sets the global state

to be the same as the initial global state S (line 10). Setting the initial state to S

ensures that subsequent runs of RunTemplate always start the generation process,

which executes the same template entry method, in the clean state.

Example. Consider the template from Figure 2.1a. The template has a static vari-

able s1 that is modified (line 7). Subsequent executions should make sure s1 starts

at 0 again, otherwise they would not be starting at the same state and would not

generate programs that are even possible.

Function RunTemplate is responsible for generating a single concrete program

from the given template T . First, it initializes H as an empty mapping from holes to

their filled expressions (line 20). RunTemplate then sets an intermediate program Q

to be the input template program T to start with (line 22), and then it repeatedly

executes the entry method entryMeth on Q (line 24). The ExecEntryMethod returns

a mapping H ′ of holes it filled to the actual expressions.

Example. In Figure 2.1a, executing the first hole on line 7 would result in a mapping

of that hole to concrete value 45350238 (line 7 in Figure 2.1b).

The overall mapping H gets updated with H ′. If all holes have been filled, then

the loop terminates (line 26 in Figure 2.6). The reason for executing the template

entry method entryMeth many times is to ensure all holes that can be reached get

filled. Eventually, our goal is to execute a corresponding generated entry method up

to MAX NUM ITERATIONS times as to trigger JIT compiler optimizations (Section 2.3.5).

Some holes may only be reachable after multiple iterations, so executing just once

would not fill those holes.
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Example. Consider the template from Figure 2.1a. The last hole (line 12) could

be skipped in the first run because the condition (line 10-11) is evaluated to false.

However, the hole could be filled later when static variable s1 gets updated (line 7),

making the condition true.

Some choice of candidate for a hole may possibly make another, later hole

unreachable, making it dead code. JAttack may fill a hole in a condition, such

as for an if statement, that always evaluates to false, and therefore any holes

within the block of these conditional statements cannot be reached. To prevent the

execution from RunTemplate from continuously executing while being unable to fill

those unreachable holes, RunTemplate stops after the MAX NUM ITERATIONS maximum

number of iterations. Having unfilled dead-code holes in a generated program is fine

because such code should never even be executed within the maximum number of

iterations later (and if it is executed, that would indicate a bug in the JIT compiler).

RunTemplate does stop earlier when all holes are filled (line 26).

Three optimizations are introduced to reduce generation cost (line 27-31) and

we describe the optimizations in detail in Section 2.3.4. Note that Q is an intermediate

program, and we do not directly return Q. As such, we can optimize and make extra

changes in Q to speed up generation, and these changes do not belong in a final

generated program P .

The final returned program P is then the original template T with all its holes

filled using the mapping H (computed using function ApplyFilledHoles in line 32;

the details of ApplyFilledHoles function are not shown). Essentially, each node

corresponding to a filled hole can output the concrete code snippet for the expression

it currently holds, and the hole expression in the template T gets replaced with this

concrete code snippet. Generate then takes the returned program P and adds it

to the running set of generated programs G. Note that Generate will keep calling

RunTemplate until obtaining a sufficient number of programs (line 13); each time,

Generate will use the fresh template program T , which has no filled holes, as to
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create a brand new generated program.

2.3.4 Optimizations for Generation

We develop three optimizations to speed up the generation process. Note

that these optimizations all apply only for a single run of RunTemplate, i.e., just a

single generated program at a time. These optimizations do not impact the generated

programs; they only speed up the generation process.

Early stopping. We can have an even earlier stopping condition based on the insight

that if the global state after execution is the same as an already seen state, then any

future run would lead to the same behavior (as a previous execution). Starting

execution in the same global state cannot lead to new executions that fill new holes.

In RunTemplate, we keep track of the seen global states in seenStates and check the

global state after each execution (line 28 in Figure 2.6). This type of program state

hashing has been extensively used in software model checking [67].

Hot filling. In our preliminary experiments, we found that executing a template

entry method many times is time-consuming, especially compared to executing the

generated entry method as part of our evaluation. The extra overhead comes from

repeated executions of our Java API methods that build and evaluate eAST nodes.

Recall that during generation the filled hole is not rewritten into the concrete ex-

pression, but just evaluated to produce the same value as the concrete expression.

The filled holes get replaced with the actual code only when the entire template gets

translated into a new generated program (line 32 in Figure 2.6). Thus, while our

implementation ensures that repeated execution of the same API method returns

the same eAST node, invoking the eval method to evaluate the node is expensive

compared to evaluating the concrete code that replaces the hole in the generated

program.

The hot filling optimization replaces the hole at runtime (during program

generation) with the concrete expression when the hole is evaluated for the first time,
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so that execution in the following iterations can use concrete code rather than invoking

our Java API methods, including the eval method that evaluates the filled hole. In

RunTemplate, we invoke the method HotFill (line 30 in Figure 2.6) on the resulting

Q after execution that finds all API calls with set nodes and, using the mapping of

holes to expressions H, replaces those calls with the concrete expressions. Then, using

interfaces provided from package javax.tools, e.g., javax.tools.JavaCompiler,

we implement an in-memory Java compiler, file manager, and associated class loader

to dynamically compile Q and then reload this modified template’s class, resulting

in a new Q. The next iteration starts from the new Q as the template (line 24

in Figure 2.6). This technique is conceptually similar to “quickening” optimization

implemented in self-optimizing interpreters [19, 66].

Eager pruning. In our preliminary experiments, we also noticed a significant number

of generated programs with conditional expressions that are trivially false, e.g., (var1

> var1). The body of such conditional statements would never be executed, so it

is unnecessary to execute any further to fill holes within statements guarded by that

condition. After executing the template entry method and obtaining filled holes

in H, we invoke function RemoveDeadCode to eliminate any such dead code in the

program Q (line 31 in Figure 2.6), completely rewriting the body into an empty

statement. This technique is conceptually similar to partial evaluation [71]. We

leverage a modern constraint solver (Z3 [39]) in our implementation to determine

whether any conditional expression is satisfiable or not, eliminating code in case the

expression is unsatisfiable. Note that we only temporarily remove the code as a means

to speed up generating a single program. The returned generated program does not

have any unreachable code removed. Later calls to RunTemplate always start with

the same template T that has all the code still present.
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2.3.5 JIT Compiler Testing Procedure

Revealing JIT compiler bugs requires not just programs but also executing

those programs many times. For each generated program, we iterate though dif-

ferent JIT compilers. For each JIT compiler, we repeatedly execute the generated

entry method, hashing the output of each execution (a generated entry method’s

return value is always encoded into an integer) into a running total. After exe-

cuting MAX NUM ITERATIONS times (the same limit in Figure 2.6), we capture the

global state of generated program (values of all static fields) and encode it within

a checksum value, adding this to the running total. The final total represents the

combination of all the executions:
∑N

i=1 hash(ri) +
∑

f∈class hash(vf ), where N is

MAX NUM ITERATIONS, ri is the return value from the entry method at the i-th itera-

tion, f is every static field of the class that declares the entry method, vf is the final

value of the static field f after all the iterations, and the hash function computes a

deterministic and unique hash code for any primitive value or object.

For a given generated program, we use differential testing [87] to check if the

running totals computed from all JIT compilers are the same. Any difference should

indicate that the generated program detected a bug within some JIT compiler. How-

ever, the program may itself be non-deterministic, i.e., having different outputs when

run multiple times on the same JIT compiler, due to random number generators,

timestamps, etc. To avoid being misled by non-determinism, when there are differ-

ences in output across different JIT compilers, we choose a JIT compiler as a reference

point and run the program twice using that same compiler. If the outputs from run-

ning on the same JIT compiler differ, then output differences between JIT compilers

do not indicate a bug. While this step may potentially miss detecting some bugs, it

gives higher guarantees that reported bugs are true bugs.

Besides checking for differences in final running totals, we also report a bug if

the execution crashes on some JIT compiler. Executing any unfilled hole (left as the

API method call in the generated program) would also trigger a crash, because an
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unfilled hole should not be reachable. The ultimate output of the entire JIT compiler

testing procedure is a subset of generated programs that expose a bug in one of the

input JIT compilers.

2.4 Experiment Setup

We briefly describe our evaluation setup.

2.4.1 Evaluation Subjects

We wrote 13 templates that exercise Java language features. We also studied

the available optimizations used in the HotSpot JIT compiler, creating six templates

whose basic structure would trigger those optimizations while including holes for

JAttack to explore. Finally, we studied existing bug reports for JIT compiler bugs,

creating four templates by modifying the programs attached to bug reports to include

holes. In our evaluation, we refer to the templates based on our own understanding

of Java and the compiler developers’ intuition of optimizations using prefix “M”. We

refer to the templates based on bug reports using prefix “B”. Overall, we created 23

templates, with the goal to evaluate the effectiveness of our optimizations.

Although hand-written templates provide unique insights on compilers to be

tested, we also evaluate JAttack for automated end-to-end compiler testing. We

collect templates automatically from existing Java code. We use 77 open-source Java

Maven projects from GitHub to extract templates from their classes. Given a project

or a module of a multi-module Maven project, we find classes defined in all “.java”

files.

Given a Java class, we first parse all the available methods in the class to

detect potential holes. For each statement, we recursively convert each subexpres-

sion into the corresponding hole, starting from the leaves of the expression tree.

For example, the expression a + b would be converted into arithmetic(intId(),

intId()).eval() (specifying no operator argument means using all valid operators),
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which matches the expression structure. Note that the final call to eval is on the

outermost API call, allowing for the greatest space of combination of values that

JAttack can explore.

After inserting holes into the Java class, we then scan the class for available

static methods, which are the candidate template entry methods. If the static method

takes any parameters, we insert additional parameter methods, one for each parameter;

a parameter method returns a concrete value for the corresponding parameter type

upon execution. For primitive values, we leverage JAttack to provide a possible

value, e.g., if the parameter is an int type we simply use intVal to represent an

integer value. For non-primitive types, i.e., classes, we search if such classes have

default constructors or constructors with primitive arguments that we can simply use

to create an instance of that class. If there are no such constructors, we search from

other classes for a public static method that returns an instance of the class. If none

of the above cases applies, we then use null as the concrete value.

The automated approach to extracting templates has been proved to be effec-

tive on discovering JIT compiler bugs, which inspired us to develop an overarching

framework around JAttack for automated end-to-end Java JIT compiler testing.

We describe a systematically developed framework for end-to-end Java JIT testing in

Chapter 3.

2.4.2 Configuring JAttack

For each template we created ourselves, we configure JAttack to generate

1,000 concrete programs (M in Figure 2.6). While generation is fastest when we turn

on all three generation optimizations (Section 2.3.4), we also evaluate running gen-

eration without any optimization and with each optimization separately, measuring

each one’s effectiveness. For each of the generated programs, we execute it 100,000

times (MAX NUM ITERATIONS in Figure 2.6) on different JIT compilers. The JIT com-

pilers we evaluate on are the HotSpot JIT compiler from Oracle JDK with version
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Java HotSpot(TM) 64-Bit Server VM 18.9 (build 11.0.8+10-LTS), the HotSpot JIT

compiler from OpenJDK 64-Bit Server VM AdoptOpenJDK (build 11.0.8+10), and

the OpenJ9 JIT compiler from Eclipse OpenJ9 VM AdoptOpenJDK (build openj9-

0.21.0, JRE 11 Linux amd64-64-Bit Compressed References 20200715 697), all based

on JDK 11.0.8.

For templates extracted from existing Java projects, we follow the same ap-

proach, except we configure JAttack to generate only 10 concrete programs from

each template program, because of the large number of templates, and we test only

on the latest Oracle JDK, which was Java HotSpot(TM) 64-Bit Server VM (build

16.0.2+7-67) at that time.

In our evaluation, we configure the HotSpot JIT compiler to restrict the specific

tiers, L1 and L4, using the option -XX:TieredStopAtLevel, in order to test C1 and

C2 compilers [94], respectively. We treat each restricted tier configuration for the

HotSpot JIT compiler as conceptually a new JIT compiler for use in our JIT compiler

testing procedure (Section 2.3.5).

We run all experiments in this chapter on a 64-bit Ubuntu 18.04.1 desktop

with an Intel(R) Core(TM) i7-8700 CPU @3.20GHz and 64GB RAM. For all time

measurements, we run the evaluation five times and report the average of those times.

2.5 Evaluation

We evaluate JAttack by asking:

RQ1: How efficient is JAttack at generating programs and executing those gener-

ated programs with different JIT compilers?

RQ2: How well can JAttack be used for automated compiler testing via extracted

templates from a large number of existing Java programs, and how does it

compare with the state-of-the-art automated JIT compiler testing?
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RQ3: What critical bugs does JAttack detect in JIT compilers?

We address RQ1 as to better understand how efficient JAttack is at generating

programs from templates, as well as the impact of our optimizations for generation,

and to understand the efficiency of JAttack’s testing procedure. We address RQ2

to understand how well JAttack can be used for automated compiler testing and

compare the effectiveness with tools used in industry. We address RQ3 to understand

the bugs that we discovered. JAttack and all JIT compiler bugs we detected,

including associated templates and generated programs, are available at https://

github.com/EngineeringSoftware/jattack.

2.5.1 Performance and Optimizations

Table 2.1 shows the time for JAttack to generate 1,000 programs for each

of our manually created 23 templates. The different columns show the total time

to generate all 1,000 programs when using different generation optimizations (Sec-

tion 2.3.4). Namely, Non-optimized means no optimizations, Early Stopping means

using only early stopping, Hot Filling means using only hot filling, and Eager Prun-

ingmeans using only eager pruning. The final column for Fully Optimized is the time

when using all optimizations. In addition to time, for each optimization column, we

also show the percentage of time reduced relative to Non-optimized time (the higher

the reduction the better). The final row shows the sum of generation time across all

templates and the overall reduction over this total time.

Without any optimizations, the total time for generation across all templates

(essentially 1,000 ∗ 23 = 23,000 programs total) is over two days. We find that

the overall time drops tremendously after the optimizations are in place. When all

optimizations are enabled (Fully Optimized), the overall time to generate all programs

for all templates is around 20 minutes, which is a 99.50% reduction over the time it

takes to generate all programs without any optimization.
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Table 2.1: Time ((dd:)hh:mm:ss) and relative reduction to Non-optimized (%) to
generate 1,000 programs in various configurations.

Templates
Non-optimized Early Stopping Hot Filling Eager Pruning Fully Optimized

Time Time Reduction Time Reduction Time Reduction Time Reduction

B1 05:00:36 00:14 99.92 01:31 99.50 02:55:07 41.74 00:56 99.69

B2 12:51:25 00:14 99.97 04:14 99.45 12:53:50 -0.31 01:03 99.86

B3 01:19 00:12 84.33 00:33 58.57 02:01 -53.59 00:13 84.08

B4 01:43 01:41 2.37 01:41 2.03 01:41 2.45 01:43 0.29

M1 11:32 00:10 98.60 00:42 93.96 10:17 10.82 00:33 95.22

M2 12:57 00:12 98.49 00:44 94.29 14:40 -13.22 00:34 95.59

M3 11:00 02:19 78.90 01:05 90.14 13:04 -18.88 00:56 91.49

M4 19:44 04:31 77.12 00:28 97.60 20:35 -4.26 00:31 97.39

M5 05:14:14 46:01 85.36 01:04 99.66 04:20:07 17.22 00:46 99.76

M6 03:05 00:09 95.08 00:45 75.79 04:21 -41.40 00:38 79.43

M7 05:24 05:31 -2.40 00:38 88.19 05:41 -5.39 00:49 84.74

M8 19:19 12:26 35.62 01:08 94.14 21:10 -9.62 01:16 93.43

M9 02:25 00:14 90.42 00:28 80.59 02:49 -16.18 00:20 85.98

M10 09:07 02:55 67.96 00:41 92.50 10:32 -15.63 00:39 92.90

M11 10:58 00:10 98.48 02:15 79.44 08:35 21.79 01:02 90.62

M12 04:23 04:40 -6.38 00:36 86.51 05:24 -22.88 00:43 83.64

M13 11:35:19 11:26:37 1.25 01:06 99.84 00:57 99.86 00:51 99.88

M14 11:40:46 05:43:54 50.93 01:38 99.77 11:58:25 -2.52 01:17 99.82

M15 03:55:35 00:09 99.94 00:45 99.68 02:49:16 28.15 00:14 99.90

M16 07:38:42 07:47:57 -2.02 01:02 99.77 07:57:36 -4.12 01:09 99.75

M17 10:38:24 11:28:05 -7.78 03:12 99.50 10:51:56 -2.12 03:32 99.45

M18 04:57 00:09 96.81 00:41 86.07 05:43 -15.45 00:32 89.08

M19 05:47 05:53 -1.82 01:01 82.34 03:51 33.41 01:02 82.16

Σ 2:22:38:42 1:13:54:24 46.34 27:59 99.34 2:07:57:38 20.79 21:20 99.50

Breaking down the effectiveness of our optimizations even further, we find

that the hot filling optimization is in general the most effective, with hot filling

reducing the generation time by 99.34% versus 46.34% for early stopping and 20.79%

for eager pruning. Furthermore, we also see that early stopping and eager pruning

have cases where they result in taking more time to generate programs than without

any optimization (the negative percentages in the table), which suggests the extra

checks required by early stopping and the time to invoke Z3 to solve constraints end

up introducing more overhead than actually helping. (We did not set a timeout for

Z3, because we did not observe Z3 getting stuck; however, setting a timeout could

impact the performance of the eager pruning optimization.) We see just one case
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for hot filling (and ultimately for when all optimizations are on) where there is little

reduction in time. However, this one case (B4) takes very little time even without

any optimizations, and the difference in time is seemingly just noise. Ultimately, all

optimizations do help overall, with the reduction in time when using all optimizations

still higher than each individually.

We also measure the time to execute the generated programs from each of

the 23 manually created templates. The total time across all generated programs is

around two hours on L4 and around two and a half hours on L1.

2.5.2 Template Extraction

As is shown in Table 2.2 and 2.3, we extract 5,419 templates from 16,309

methods in 15,325 classes, resulting in 50,609 generated programs. Recall that we

let JAttack generate 10 programs from every template (Section 2.4), but not every

template includes sufficient number of holes from which 10 programs can be generated

(JAttack only explores the reachable holes), which is why the total number of

generated programs is less than 10 ∗ 5,419 = 54,190. We found 137 out of 50,609

generated programs failed during our JIT compiler testing procedure. We inspected

all these 137 programs and discovered five unique bugs (Section 2.5.3).

In addition, we compare JAttack against an existing automated compiler

testing tool, Java* Fuzzer [9], which is a fuzzer tool that Oracle has been using daily

for years and has been successful at detecting bugs in the HotSpot JIT compiler.

Guided by grammar rules and predefined heuristics on program structures, Java*

Fuzzer generates hundreds of thousands of small, random Java programs as tests,

and it then performs differential testing between a JVM under test and a reference

JVM. In contrast, JAttack is primarily developed for developers to embed their

knowledge into program generation by specifying holes in templates with automated

template extraction from existing Java programs. Although JAttack and Java*

Fuzzer have similar intentions, they work quite differently, which is why the com-
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Table 2.2: Results of template program extraction from existing Java projects, in-
cluding the number of templates, the total number of generated programs and the
number of generated programs that failed JIT compiler testing per project.

Project # Templates # Programs # Failures

checkstyle 194 1,219 23
commons-codec 145 1,339 45
commons-compress 140 1,350 0
commons-configuration 8 58 0
gson 11 98 0
jfreechart 158 1,482 1
commons-jxpath 37 355 0
commons-lang 733 7,036 0
libgdx 359 3,466 0
commons-math 564 5,484 9
Openfire 137 1,030 0
vectorz 398 3,622 0
zxing 240 2,090 2
bootique 6 60 0
docker-maven-plugin 88 861 0
easy-random 5 50 0
find-sec-bugs 207 2,070 0
game-server 112 1,075 2
gravitee-gateway 1 10 0
Jupiter 61 455 0
mango 38 347 0
mysql perf analyzer 1 10 0
spring-cloud-config 3 16 0
streamex 6 60 0
ta4j 22 220 0
whatsmars 58 575 0
aviatorscript 39 354 0
bytecode-viewer 52 442 0
Chronicle-Queue 37 362 0
docker-java 4 40 0
flyway 47 428 0
javacpp 10 100 0
jsonschema2pojo 1 10 0
jsoup 79 790 0
JSqlParser 12 120 0
metrics 0 0 0
Recaf 187 1,816 2
ripme 29 238 38
spring-cloud-gateway 16 160 0
spring-data-jpa 5 44 0
WePush 26 251 0
byte-buddy 36 359 0
commons-bcel 57 570 0
commons-digester 2 20 0
dnsjava 85 831 0
easy-batch 4 40 0
equalsverifier 4 10 0
graphql-spqr 7 70 0

Continued
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Table 2.3: Table 2.2 continued.

Project # Templates # Programs # Failures

james-mime4j 21 204 14
javassist 224 2,227 0
jsql-injection 8 80 0
karaf-cellar 0 0 0
lambda 2 20 0
mug 9 90 0
ormlite-core 8 64 0
pebble 10 100 0
simple-java-mail 3 13 0
spring-cloud-aws 1 10 0
spring-cloud-commons 1 10 0
spring-data-neo4j 7 70 0
spring-data-rest 1 10 0
typescript-generator 4 24 0
uima-uimafit 61 603 0
carina 41 306 0
fluo 22 212 0
commons-jexl 36 360 0
maven-assembly-plugin 5 50 0
maven-indexer 7 52 0
maven-wagon 4 40 0
commons-numbers 42 415 0
commons-ognl 2 4 0
one-nio 298 2,899 0
phoenicis 1 10 0
commons-text 80 798 1
turbine 21 204 0
commons-validator 22 195 0
velocity-tools 7 46 0

Σ 5,419 50,609 137

parison results should be taken with a grain of salt. We run Java* Fuzzer using the

same resources (CPU/RAM) for the same amount of time (which matches the total

execution time for JAttack in Section 2.5.2). We perform differential testing by

comparing outputs from executions across different JIT compiler tiers, same as for

JAttack. We also collect code coverage of both the C1 (src/hotspot/share/c1/)

and C2 (src/hotspot/share/opto/) compilers from executing the programs gener-

ated by both tools separately. Table 2.4 compares the results of JAttack and Java*

Fuzzer. Java* Fuzzer did not generate any program that would expose a bug in the

HotSpot JIT compiler in the given time frame. Also, JAttack achieves higher code

coverage on both C1 and C2.
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Table 2.4: Comparison of JAttack and Java* Fuzzer.

#Generated #Timeout #Failures
Coverage(%)

C1 C2

JAttack 50,609 1,243 137 84.3 80.3

Java* Fuzzer 15,931 2,336 0 80.6 67.5

Table 2.5: Detected bugs in HotSpot; five bugs were previously unknown.

Bug ID Type JDK Versions Status CVE Duplicates
Source of
Templates

JDK-8239244 Diff 8, 11, 13 Fixed CVE-2020-14792 - Hand-written
JDK-8258981 Crash 9, 10, 11, 15, 16 Fixed - JDK-8250609 Hand-written
JDK-8271130 Crash 8, 11, 16, 17 Fixed CVE-2022-21305 - Extracted
JDK-8271276 Crash 16, 17, 18 Fixed - - Extracted
JDK-8271459 Diff 8, 11, 16, 17, 18 Fixed - - Extracted
JDK-8271926 Crash 11, 16 Fixed - JDK-8268362 Extracted
JDK-8297730 Diff 9, 11, 17, 18, 19, 20, 21 Fixed - - Extracted

1 public class C {

2 static int s1;

3 static int s2;

4 private static void m() {

5 int X = 4_194_304, var1 = 0, i = 0;

6 s1 = s1 + X;

7 while (i++ < 10 && (s1 <= s2 || s1 > X)) {

8 s2 = --s1 + s2; var1 += s1 + s2; } }

9 public static void main(String[] args) {

10 for (int i = 0; i < 100_000; ++i) m();

11 System.out.println(s1 + s2); } }

Figure 2.7: Bug JDK-8239244.

2.5.3 Detected Bugs

Table 2.5 contains all the seven bugs we discovered during experiments in this

section. We show (in Figure 2.1b and 2.7–2.13) and describe all the seven bugs.

We discovered two bugs using the templates we wrote ourselves. JDK-8239244

(Figure 2.7), from template M12, showed mismatching outputs on different tiers be-

cause C2’s range-check elimination leads to incorrect loop executions. The Oracle

developers labeled the bug we reported as a CVE, and they fixed the bug in a recent

Oracle Critical Patch Update. The Oracle developers also confirmed JDK-8258981
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1 public class C {

2 static int s1;

3 static int s2;

4 public static void m() {

5 int[] arr1 = { s1, s2, 1, 2, 0 };

6 for (int i = 0; i < arr1.length; ++i)

7 if (arr1[3] <= s2 || s2 <= arr1[2])

8 arr1[i] &= s1; }

9 public static void main(String[] args) {

10 for (int i = 0; i < 100_000; ++i) m(); } }

Figure 2.8: Bug JDK-8258981.

1 public class C {

2 public static void m() {

3 int X = 536_870_908;

4 int[] a = new int[X + 1];

5 a[X] = 1; }

6 public static void main(String[] args) {

7 for (int i = 0; i < 1_000; ++i) m(); } }

Figure 2.9: Bug JDK-8271130.

1 import java.util.regex.Matcher;

2 import java.util.regex.Pattern;

3 public class C {

4 public static void m(String s) {

5 Pattern pattern = Pattern.compile("");

6 Matcher matcher = pattern.matcher(s); }

7 public static void main(String[] args) {

8 for (int i = 0; i < 10_000; ++i)

9 try { m(null); }

10 catch (Throwable e) {} } }

Figure 2.10: Bug JDK-8271276.

(Figure 2.1b), where a crash occurred from C2, as a P32 bug; this bug was discovered

in parallel by others and was fixed in JDK 16. Our template that exposed this bug

is shown in Figure 2.1a.

Additionally, we discovered five bugs using extracted templates from existing

2P3: Major loss of function.
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1 public class C {

2 static String m() {

3 StringBuilder sb = new StringBuilder(-1);

4 return sb.toString(); }

5 public static void main(String[] args) {

6 int sum = 0;

7 for (int i = 0; i < 10_000; ++i)

8 try { m(); }

9 catch (Throwable e) { sum += 1; }

10 System.out.println(sum); } }

Figure 2.11: Bug JDK-8271459.

1 import java.util.Arrays;

2 public class C {

3 private static void m() {

4 int[] arr = { 0 };

5 int max = -1;

6 for (int i : arr) max = max;

7 Arrays.copyOf(arr, max); }

8 public static void main(String[] args) {

9 for (int i = 0; i < 10_000; ++i)

10 try { m(); }

11 catch (Throwable e) {} } }

Figure 2.12: Bug JDK-8271926.

1 public class C {

2 static byte[] m(byte[] arg1) {

3 byte[] b = new byte[-1];

4 System.arraycopy(arg1, 0, b, 0, arg1.length);

5 return b; }

6 public static void main(String[] args) {

7 int sum = 0;

8 for (int i = 0; i < 100_000; ++i) {

9 try {

10 System.out.println(m(null));

11 } catch (Throwable e) {

12 if (e instanceof java.lang.NegativeArraySizeException) {

13 sum++; } } }

14 System.out.println(sum); } }

Figure 2.13: Bug JDK-8297730.
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Java projects. JDK-8271130 (Figure 2.9) crashed on tiers L1 and L4 because an

array store in C1 compiled code writes to an arbitrary location due to index overflow.

The Oracle developers labeled the bug as a CVE, and they fixed the bug in another

recent Oracle Critical Patch Update. JDK-8271276 (Figure 2.10) was confirmed as

a crash bug, with priority P23, related to wrong JVM state used for a receiver null

check, and it was fixed in JDK 17. JDK-8271459 (Figure 2.11) missed throwing

NegativeArraySizeException on tier L4 caused by C2 optimizations; the Oracle

developers labeled it as a P2 bug and fixed it in JDK 18. JDK-8271926 (Figure 2.12)

crashed due to incorrect C2 loop optimizations before calling Arrays.copyOf with a

negative parameter; this bug was confirmed with priority P3 and was also discovered

in parallel by others. The bug was fixed in JDK 18. JDK-8297730 (Figure 2.13)

threw incorrect exceptions from array initialization and following System.arraycopy

caused by incorrect execution of C2 compiled code; the Oracle developers labeled it

as a P3 bug and fixed it in JDK 21.

2.6 Discussion

In this section, we contrast JAttack’s execution-based generation to static

generation and describe limitations of JAttack.

2.6.1 Execution-Based vs. Static Generation

Recall that JAttack generates programs through an execution-based model

(Section 2.3.3) but we could have generated programs statically by processing an

entire template and replacing all holes with concrete expressions. Static generation

would process the template repeatedly, putting in different concrete expressions per

hole to output a new generated program, up to some maximum number. Generating

programs statically could be faster, because it would not be executing the program

3P2: Crashes, loss of data, severe memory leak.
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at any point.

However, the execution-based generation provides a number of advantages

over static generation. Execution-based generation (1) knows what exactly would

be executed in a generated program after being compiled, i.e., which parts are dead

code or which parts are executable (such information can be leveraged to guide the

exploration of holes instead of relying on randomness, which we discuss as future

work in Chapter 5) and (2) makes it possible to use values available at runtime to

construct holes; consider:

int m(int[] a) {

return a[intVal(0, a.length).eval()];

}

where the hole would be a random integer between 0 and the length of the array a,

which depends on the value of a, known only when actually executing the template.

An execution-based model allows for expressing more complex programs that static

generation cannot generate, as it does not have such runtime information.

To compare execution-based and static generation, we create a variant of JAt-

tack that generates programs statically. This variant relies on the same syntax and

semantics, but it statically processes the template once to replace all the holes with

concrete expressions. Similar to execution-based generation, we construct eASTs for

all the holes. Each eAST per hole contains all the choices for the hole, i.e., concrete

expressions that can be filled in the hole. For each hole written in the template, we

randomly choose one of the concrete expressions to replace the hole, resulting in a

generated program. The generated program has every hole filled, unlike for execution-

based generation where some holes may remain unfilled if they are not reached during

execution.

For this evaluation, we only consider those templates that are hand-written.

We use the same configuration (1,000 programs for each template) for our static

variant of JAttack as to allow for proper comparison against the execution-based

model. The total generation time with static generation is around three minutes,
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which is shorter than execution-based generation (around 20 minutes), but they both

generate a large number of programs, and executing all generated programs for both

approaches still takes almost four and a half hours. As such, generation time is prac-

tically negligible compared against the differential testing part of JAttack. Further-

more, since static generation fills every hole in the template, some generated programs

could be syntactically different from each other, but their differences are only for ex-

pressions in the unreachable holes, so essentially the same code would be executed.

Execution-based generation would skip unreachable holes, ensuring every generated

program is not only syntactically different but also executed differently. We collected

reachability of the filled holes when executing the generated programs. 78.44% of

filled holes are reached during execution of generated programs from static gener-

ation while execution-based generation guarantees 100.00% reachability. In terms

of detected bugs, compared against execution-based generation, statically generated

programs detected only JDK-8239244 and missed detecting JDK-8258981.

2.6.2 Limitations

There are two main reasons why a relatively small number (5,419) of tem-

plates are extracted from a relatively large number (15,325) of classes in existing

projects. First, JAttack initially supported only static Java methods as template

entry methods. One way to support instance methods as template entry methods

is to use Randoop [101] to create receiver objects and inputs for instance methods.

Second, we use a different name for the extracted template class from the original

class, which sometimes made the template not pass Java type-checking due to circular

dependencies between the template class and other classes. To solve this issue, we

can edit the original class in place instead of creating a renamed template class. We

have extended JAttack to address both limitations in the overarching framework

LeJit (see Chapter 3).

JAttack requires re-executing programs many times just to trigger JIT com-

piler optimizations for testing. We considered the option -XX:CompileThreshold
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that controls the number of interpreted method invocations before optimization. We

also considered the option -XX:Tier4InvocationThreshold that controls the mini-

mum number of method invocations before transitioning to L4. However, we found

these other options also have a big effect on when JIT compiler optimizations occur,

so just using these options would not truly reflect actual JIT usage, similar to just

enabling C2 from the beginning [61].

2.7 Conclusion

We presented JAttack, a framework that enables template-based testing for

compilers. Using JAttack, compiler developers can write templates in the same

language as the compiler they are testing (Java), enabling them to leverage their

domain knowledge to set up a code structure likely to lead to compiler optimizations

while leaving holes representing expressions they want explored. JAttack executes

templates, exploring possible expressions for holes and filling them in, generating

programs to later be compiled using various compilers. To speed up the generation

process, we introduced three optimizations that reduced overall generation time by

99.50% in our experiments. Using 23 templates created on our own and 5,419 tem-

plates extracted from existing Java projects, JAttack found seven critical (P3 or

higher) bugs in the HotSpot JIT compiler, all of which were confirmed and fixed by

Oracle developers. Five of them were previously unknown, including two unknown

CVEs. JAttack blends the power of developers insights, who are providing tem-

plates, and random testing to detect JIT compiler bugs.

To better automate end-to-end Java JIT compiler testing using JAttack

and provide templates automatically, we develop an overarching framework around

JAttack, which also addresses some limitations of JAttack.
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Chapter 3: Java JIT Compiler Testing with

Template Extraction

In this chapter, we present LeJit, a unified automated testing framework

around JAttack (Chapter 2), which streamlines creation of templates from existing

Java code and testing of Java JIT compilers. LeJit automatically generates tem-

plate programs from existing Java code by converting expressions to holes, as well as

generating necessary glue code (i.e., code that generates instances of non-primitive

types) to make generated templates executable. We have successfully used LeJit

to test a range of popular Java JIT compilers, revealing five bugs in HotSpot, nine

bugs in OpenJ9, and one bug in GraalVM. All of these bugs have been confirmed by

Oracle and IBM developers, and 11 of these bugs were previously unknown, including

two CVEs. Our comparison with several existing approaches shows that LeJit is

complementary to them and is a powerful technique for ensuring Java JIT compiler

correctness. 1

3.1 Introduction

Recall that JAttack takes templates as input and each template is a valid

Java program with holes, and each hole is written in an embedded domain-specific

language that specifies the set of expressions that can potentially fill the hole. JAt-

tack generates programs by fuzzing holes during the execution of a given template.

The advantage of this technique is that developers have full control of the space that

should be tested and the way programs should be modified. At the same time, JAt-

tack requires substantial developers’ engagement, as both template program design

and hole values are written manually.

1Parts of this chapter are published at FSE 2024 [148]. I led the design, implementation, and
evaluation of the system, as well as analyzing the data and writing the paper.
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To automate Java JIT compiler testing by using JAttack and provide tem-

plates automatically, we present another framework built around JAttack, dubbed

LeJit, for automatically generating template programs from existing code. LeJit

generates templates by rewriting existing expressions to holes, as well as generat-

ing necessary glue code (e.g., code that creates instances of non-primitive types on

which methods can be invoked) to make those templates executable. Execution of

generated templates, which randomly fills the holes, creates concrete programs that

are used as inputs for Java JIT compiler testing. As a result, LeJit sits in between

mutation-based techniques and template-based techniques. Unlike existing template-

based techniques, templates are automatically extracted from any existing code. Un-

like mutation-based techniques, each hole has its own set of values and can be filled

dynamically (rather than statically), and multiple holes are filled simultaneously dur-

ing the execution of the template. Subsequently, LeJit is in a way similar to higher

order mutation [70], but holes are filled dynamically by executing templates.

LeJit is designed to enable generation of a program template from any existing

method. One of the key challenges was to enable templates for methods that accept

instances of complex types as arguments, including an instance on which an instance

method is to be invoked. Our key insight in this direction is to capture instances of

various types during testing of methods from which templates are to be extracted;

tests can be either existing hand-written tests or automatically-generated tests (e.g.,

using Randoop).

Unlike several existing tools for testing Java runtime environments [57], LeJit

generates source code rather than bytecode. Some advantages of focusing on source

code rather than bytecode include: 1) eliminating the need to worry about invalid

classfiles, as those obtained from source files always pass the early check of the class

format performed by bytecode verifiers, allowing for “deeper” testing; 2) simplifying

every step during the bug reporting phase: a bug reported as a source code snip-

pet instead of bytecode is easier to understand, minimize, and report, and it also

facilitates confirmation, fixing, and integrating in test suites by compiler developers;
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3) decreasing the likelihood of revealed bugs resulting in false positives, since these

programs result in valid bytecode generated via a Java compiler as opposed to random

sequences of bytecode instructions.

We used LeJit to test several JIT compilers: Oracle HotSpot, IBM OpenJ9,

and Oracle GraalVM. We used differential testing [87] to detect crash and inconsis-

tency between JIT compilers. We extracted templates from ten open-source Java

projects available on GitHub, although our technique can extract templates from any

other code. Our runs discovered five bugs in HotSpot, nine bugs in OpenJ9, and

one bug in GraalVM; 11 out of the 15 bugs were previously unknown, including two

CVEs. All bugs have been confirmed by compiler developers.

We further compared LeJit with JITfuzz [136] and JavaTailor [153], the state-

of-the-art testing tools for Java JIT compilers and JVM, respectively. Our experi-

ments show that LeJit increased code coverage of C1 compiler by 8.0% and C2

compiler by 8.2% [94] compared to JITfuzz, and increased by 3.3% and 4.0% com-

pared to JavaTailor, when testing OpenJDK HotSpot. Additionally, using JITfuzz

and JavaTailor we have not discovered any of the bugs found by LeJit.

The main contributions of LeJit include:

• Framework. We designed and implemented a framework for extracting templates

from existing code by converting expressions into holes and capturing instances

of complex types during test execution. Captured instances enable execution of

templates that produce concrete programs used as inputs for compiler testing.

• Implementation. We have implemented LeJit for Java and built it as a unified

automated testing framework around JAttack. We have also developed several

variants of LeJit to help us understand the benefits of templates and captured

instances used for arguments.

• Evaluation. We have performed extensive evaluation of LeJit. We have ex-

tracted 143,195 templates from ten open-source Java projects on GitHub. We
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then used JAttack to generate 886,178 concrete programs. We have used the

generated programs to test three compilers – Oracle HotSpot, IBM OpenJ9, and

Oracle GraalVM. Additionally, we compare LeJit with JITfuzz and JavaTailor the

state-of-the-art tools for testing Java runtime environments.

• Analysis. We performed an in-depth analysis of templates and generated programs

to understand how the presence of various Java language features, e.g., arrays,

conditional statements, loops, etc., affect LeJit’s bug detection capabilities. We

also studied the impact of various types of templates on the result, and we find

types of holes that play an important role in bug detection.

• Results. Our results show the effectiveness of LeJit. We have discovered 15 bugs,

including five bugs in HotSpot, nine bugs in OpenJ9, and one bug in GraalVM; 11

of the bugs are previously unknown, including two CVEs. All bugs have been con-

firmed by compiler developers. Our results also show that LeJit is complementary

to the state-of-the-art techniques, which did not discover any of the bugs found by

LeJit.

LeJit is available at https://github.com/EngineeringSoftware/lejit.

3.2 Example

We demonstrate the capabilities of LeJit, using an example program that

involves a bug we detected in the OpenJ9 JIT compiler. Figure 3.1 shows a snippet

of the example program.

LeJit extracts a template from this program by replacing expressions with

holes, as shown in Figure 3.2. A hole is a placeholder to be filled with concrete

expressions during program generation. Each hole is expressed as an API call, which

defines the type and range of values that can be used to fill the hole, e.g., the first

hole refId(String.class) (line 10) in the template represents any available variable

with type String at this execution point [144]. (See Section 2.3.1 and 2.3.2 for the
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1 package org.apache.commons.text;...

2 public class StrBuilder implements ... { ...

3 static final int CAPACITY = 32;

4 char[] buffer;

5 private int size;

6 private String newLine, nullText;

7 public StrBuilder(final String str) {

8 if (str¶ == null) { buffer = new char[CAPACITY·]; } ... }

9 public StrBuilder trim() {

10 if (size == 0¸) { return this; }

11 int len = size¹;

12 final char[] buf = bufferº;

13 int pos = 0»;

14 while (pos < len && buf[pos] <= ' '¼) { pos++; }

15 while (pos < len && buf[len - 1] <= ' '½) { len--; } ...

16 return this; } }

Figure 3.1: An existing program from the text project [126] used as a source for
template extraction.

details on holes and API calls.)

There are eight holes displayed in the template, two in the constructor and six

in the method trim. Each hole, labeled with a circled number, is converted from the

expression in the original program with the same number. For example, the first hole

refId(String.class) (line 10) in Figure 3.2 is converted from the local variable str

(line 8) in Figure 3.1. The next hole intId() (line 11) in Figure 3.2, which repre-

sents any available int variable, is converted from the int field CAPACITY (line 8) in

Figure 3.1. The third hole (line 15) in Figure 3.2, represents a relational expression

that connects an integer variable and an integer literal (between Integer.MIN VALUE

and Integer.MAX VALUE) using a relational operator (<, <=, >, >=, ==, !=). This

hole is converted from the if condition size == 0 (line 10) in Figure 3.1. Simi-

larly, the next three holes: an integer variable hole (line 16), a char array variable

hole (line 17), and an integer literal hole (line 18) in Figure 3.2, are converted from

size (line 11), buffer (line 12), and 0 (line 13) in Figure 3.1, respectively. The

last two holes are converted from the while condition pos < len && buf[pos] <=

' ' and pos < len && buf[len - 1] <= ' ', respectively. The hole 7 (line 22)
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1 package org.apache.commons.text;...

2 import jattack.annotation.*;

3 import static jattack.Boom.*;

4 public class StrBuilder implements ... { ...

5 static final int CAPACITY = 32;

6 char[] buffer;

7 private int size;

8 private String newLine, nullText;

9 public StrBuilder(final String str) {

10 if (refId(String.class).eval()¶ == null) {

11 buffer = new char[intId().eval()·]; } ... }

13 @Entry

14 public StrBuilder trim() {

15 if (relation(intId(), intVal()).eval()¸) { return this; }

16 int len = intId().eval()¹;

17 final char[] buf = refId(char[].class).eval()º;

18 int pos = intVal().eval()»;

19 int _lim1 = 0;

20 while (logic(relation(intId(), intId()),

21 relation(charArrAcc(refId(char[].class), intId()), charVal()))

22 .eval()¼ && _lim1++ < 1000) { pos++; }

23 int _lim2 = 0;

24 while (logic(relation(intId(), intId()),

25 relation(charArrAcc(refId(char[].class),

26 arithmetic(intId(), intVal())),

27 charVal()))

28 .eval()½ && _lim2++ < 1000) { len--; } ...

29 return this; }

31 @Argument(0)

32 public static StrBuilder _arg0() {

33 StrBuilder sb1 = new StrBuilder("date");

34 sb1.append((Object) 10.0);

35 sb1.appendSeparator("d");

36 Object[] arr = new Object[] { 1.0 };

37 return sb1.append("resourceBundle", arr); } }

Figure 3.2: An extracted template from the program in Figure 3.1. Expressions are
replaced with holes.

in Figure 3.2 represents a logical relational expression that connects two relational

expressions using a logical operator (&&, ||). The first relational expression connects

two integer variables using one of the relational operators. The second relational

expression connects a char array access expression and an integer variable. The char
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1 package org.apache.commons.text;...

2 import jattack.annotation.*;

3 import jattack.csutil.Helper;

4 import jattack.csutil.checksum.WrappedChecksum;

5 import jattack.exception.UnfilledHoleException;

6 import static jattack.Boom.*;

7 public class StrBuilder implements ... { ...

8 static final int CAPACITY = 32;

9 char[] buffer;

10 private int size;

11 private String newLine, nullText;

12 public StrBuilder(final String str) {

13 if (nullText¶ == null) { buffer = new char[CAPACITY·]; } ... }

15 public StrBuilder trim() {

16 if (size <= -1838784853¸) { return this; }

17 int len = CAPACITY¹;

18 final char[] buf = bufferº;

19 int pos = 809931165»;

20 int _lim1 = 0;

21 while ((len > _lim1 && buf[size] != 'Z')¼ && _lim1++ < 1000) { pos++; }

22 int _lim2 = 0;

23 while ((pos <= _lim2 || buf[size - 1312433786] > '0')½ && _lim2++ < 1000) {

24 len--; } ...

25 return this; }

27 public static StrBuilder _arg0() {

28 StrBuilder sb1 = new StrBuilder("date");

29 sb1.append((Object) 10.0);

30 sb1.appendSeparator("d");

31 Object[] arr = new Object[] { 1.0 };

32 return sb1.append("resourceBundle", arr); }

34 public static void main(String[] args) {

35 WrappedChecksum cs = new WrappedChecksum();

36 StrBuilder rcvr = _arg0();

37 cs.update(rcvr);

38 for (int i = 0; i < 100_000; ++i) {

39 try { cs.update(rcvr.trim());

40 } catch (UnfilledHoleException e) { throw e;

41 } catch(Throwable e) { cs.update(e.getClass().getName()); } }

42 cs.update(StrBuilder.class);

43 Helper.write(cs.getValue()); } }

Figure 3.3: A concrete program generated from the template in Figure 3.2 by filling
in the holes, which crashed the OpenJ9 JIT compiler.
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array access expression selects an available variable of type char[] as the array and

utilizes an integer variable as the index value to retrieve the corresponding element

from the array. The last hole (line 28) in Figure 3.2 represents a similar expression

but it uses an arithmetic expression as the index of the char array access expression.

The arithmetic expression applies one of the arithmetic operators (+, -, *, /, %) on

an integer variable and an integer literal (i.e., constant).

A template must have an entry method that is the start of the execution (see

Section 2.3.3), annotated with @Entry as shown in the template (method trim). One

of the key challenges is to obtain an argument for the method trim, i.e., an instance

on which the method is to be invoked, so that the template can be executed. In our

example, since the entry method trim is an instance method, the only required input

is an instance of the template class StrBuilder that declares the method. To provide

inputs to the entry method, LeJit inserts a public static argument method, annotated

with @Argument (method arg0). Thus, the argument method arg0 instantiates a

StrBuilder and returns the instance after invoking a sequence of methods (line 33–

37) in Figure 3.2. Our key insight in this direction is to capture the sequence of

methods during testing of the entry method trim; tests can be either existing hand-

written tests or automatically-generated tests (e.g., using Randoop). The sequence

of methods to return an instance of class StrBuilder (line 33–37) in Figure 3.2 is

obtained from a generated test.

Following JAttack, LeJit generates programs by executing the template

from the entry method defined in the template (see Section 2.3.3). When LeJit

reaches an unfilled hole the first time, it randomly picks a valid expression within the

bounded search space defined by the hole. Once LeJit has filled all reachable holes, it

outputs a generated program. Figure 3.3 shows an example generated program from

the template in Figure 3.2. In the figure, the hole API and the concrete expression

generated to fill it share the same circled number, indicating a match between them.

The generated program can be executed directly, as LeJit also generates a main

method (line 34) in Figure 3.3, which invokes the entry method using an instance
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of the class that is converted into a template. This instance is returned from arg0

(line 36) in Figure 3.3. The main method repeatedly invokes the entry method in a

for loop (line 38–41) in Figure 3.3. The large number of iterations is necessary to

trigger JIT compiler optimizations in Java since the JIT compiler triggers and starts

to optimize code only when a method becomes “hot”, i.e., frequently executed. To

encode the program behavior during execution, the main method hashes and saves

the argument values, return values, or any thrown exceptions from each iteration,

and the final class state (i.e., static fields) of the template. These hashes are used to

generate a checksum, which is the final output of the execution.

To perform differential testing [87], LeJit executes every generated program

using various JIT compilers and compare their outputs. The program in Figure 3.3

gave the same output using HotSpot and GraalVM, but it crashed the OpenJ9 JIT

compiler. The IBM developers confirmed that the crash is due to a bug in the OpenJ9

JIT compiler and the way it handles array index out-of-bounds.

3.3 LeJit Framework

The LeJit framework has five key phases: (a) collection, (b) extraction,

(c) generation, (d) testing, and (e) pruning, as illustrated in Figure 3.4. First (Sec-

tion 3.3.1), LeJit collects a list of methods from the given code and obtains tests

that can be used to create meaningful inputs to these methods. Then (Section 3.3.2),

treating each method in the list as an entry method, LeJit selects the input that

can be used to invoke the method, and extracts a template from the Java class that

defines the method. Next (Section 3.3.3), LeJit executes each template with the

selected inputs to the entry method to generate concrete Java programs. After that

(Section 3.3.4), LeJit executes the generated programs through the entry method

with the same selected inputs, using different Java JIT compilers for differential test-

ing [87]. Finally (Section 3.3.5), LeJit prunes the detected crash and cases that lead

to inconsistent outputs across various JIT compilers as to minimize false positives,
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Figure 3.4: The overview of LeJit. Dotted-dashed lines: test-based approach; dashed
lines: pool-based approach.

and then reports detected bugs.

3.3.1 Collection

In the collection phase, LeJit collects a list of methods from the given code

to be used as template entry methods. LeJit then obtains tests for each of the

methods, which will be used to obtain objects that can be used as arguments to the

entry method.

We developed two approaches to collect a list of entry methods and to obtain

code sequences that create arguments for entry methods.

Test-based. We use automated test generation to generate a large number of unit

tests for all the classes in the given code. We utilize the last method call in the unit

test as the entry method. As such, we can save the code sequence leading up to the

method call as a way to construct arguments for that method. This approach ideally

results in the same number of entry methods as the number of unit tests generated,

and each entry method is associated with the saved code sequence as the input to the

method.

Pool-based. Instead of using generated unit tests as in the previous approach, we

save all prefixes of generated tests in the pool-based approach; each prefix creates

an object that we add to an object pool. This object pool stores all code sequences

produced during a test generation run, where each code sequence ultimately returns

an instance of a class defined within the project (the object returned by the final
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method call in the sequence). We organize the pool using a mapping that associates

each class with all the code sequences that can instantiate that class. This approach

parses all the Java classes in the given project and obtains all the methods from these

classes, and then uses all of the methods as entry methods.

Note that the pool-based approach creates a superset of objects created by the

test-based approach, but the entry methods are different (as described above). We

compare these two approaches in our evaluation to discover if they are complementary,

i.e., if each leads to valuable inputs during compiler testing.

3.3.2 Extraction

For every entry method in the list provided by the collection phase, LeJit

creates a template from the class that declares the method. Figure 3.5 shows the

overall algorithm for LeJit to extract a template from a given entry method. The

input to the function Extract is the entry method M , and either the collected inputs

to M , if using the test-based approach, or the pool of inputs for all methods, if using

the pool-based approach, is represented by L or I, respectively. The output is the

extracted template t.

The function Extract starts by finding the original class C that declares the

entry method in the given Java code (line 6) and initializes template t as a clone of

C (line 7). Next, for the class, LeJit recursively converts every expression in every

method (obtained from GetAllExprs(t)) into a hole. Next, Extract replaces each

expression e in t with a hole API call (i.e., Java method that represents a hole) by

calling the function Convert (line 9) and then replacing the expression into the hole

in place (line 10). Not only does LeJit convert each expression into a hole, it can

also selectively create holes for some types of holes. Although we empirically evaluate

impact of various types of holes, we assume in this algorithm that we convert each

expression into a hole w.l.o.g.

The function Convert takes an expression e and its depth d as input and
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1: Input: M : the entry method
2: Input: L: the collected input to the entry method (test-based only)
3: Input: I: the pool of inputs to all methods (pool-based only)
4: Output: the extracted template
5: function Extract(M , L, I)
6: C ← GetClassDeclaring(M)
7: t ← Clone(C)
8: for all e in GetAllExprs(t) do
9: e′ ← Convert(e, 0)
10: Replace(e, e′)

11: for all l in GetAllLoops(t) do
12: InsertLoopLimiter(l)

13: if L then
14: m ← CreateArgumentsMethod(L)
15: InsertMethod(m, t)

16: if I then
17: for all p in GetAllParams(M) do . including the receiver
18: τ ← ResolveType(p)
19: if IsPrimitive(τ) then i ← “<τ>Val()”
20: else if I.contains(τ) then i ← RandomInputOfTypeFromPool(τ , I)
21: else i ← “null”
22: m ← CreateArgumentMethod(p, i)
23: InsertMethod(m, t)

24: return t

25: Input: e: the original expression
26: Input: d: the depth of e
27: Output: the hole API
28: function Convert(e, d)
29: τ ← ResolveType(e)
30: switch GetCategoryOfExpr(e) do
31: case Identifier:
32: h ← “<τ>Id()”

33: case Literal:
34: h ← “<τ>Val()”

35: case Relation:
36: l ← Convert(e.left, d+ 1)
37: r ← Convert(e.right, d+ 1)
38: h ← “relation(<l>, <r>)”

39: . . .
40: if d = 0 then return “<h>.eval()”
41: else return “<h>”

Figure 3.5: Template extraction algorithm.

returns a hole API. It resolves the type of e as τ , then converts e into a hole API by

recursively replacing each sub-expression of e with the proper hole API call. If e is
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an identifier, it is converted into a <τ>Id hole API call.

Example. The variable str of String type in the class from Figure 3.1 (line 8)

is converted into refId(String.class) in the template from Figure 3.2 (line 10).

Another int variable size (line 11) is converted into intId() in the same template

(line 16).

If e is a literal, it is converted into a <τ>Val hole API call.

Example. The integer number 0 in the class from Figure 3.1 (line 13) is converted

into intVal() in the template from Figure 3.2 (line 18).

If e is not a terminal, its sub-expressions are recursively converted into hole API calls.

For a relational expression e, the left and right sub-expressions are converted into the

hole API call l (line 36 in Figure 3.5) and r (line 37), respectively, before l and r

are combined using the relation hole API (line 38). The operator of the relational

expression is ignored because a hole API uses all available operators by default if no

operator argument is provided.

Example. Consider the relational expression size == 0 in the class from Figure 3.1

(line 10). The left sub-expression size is converted into intId(), and the right

sub-expression is converted into intVal(). Then the two results are combined as

relation(intId(), intVal()) in the template from Figure 3.2 (line 15).

Other expressions that are non-terminals, e.g., arithmetic, logical, array access, etc.,

are converted in a similar way as a relational expression; we do not list all of them in

the algorithm. Once the given expression e is converted into a hole API call, Convert

checks if the current depth is 0. If so, it appends the eval() call to the hole API call

and returns the resulting call as the output of the function (line 40–41). Note that

eval() first triggers the hole API call, which returns an expression that fills the hole.

Then eval() is called on the returned expression that evaluates to the type that the

hole represents (e.g., int). Thus, there is only one eval() for the outermost hole

API call.
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A hole as a loop condition might introduce an infinite loop in the template

class t if the hole is filled in with some expression that is always evaluated to true

at the generation phase. Therefore, Extract inserts a loop limiter to restrict the

maximum iterations that one loop can be executed (line 11–12 in Figure 3.5).

Example. Consider hole 7 in the template from Figure 3.2 (line 22), which is a

loop condition. To prevent the infinite loop that may occur due to filling in random

values, a loop limiter lim1++ < 1000 is appended to the logic hole to restrict the

maximum iterations to one thousand times.

Once the holes are created, Extract then creates and inserts argument meth-

ods into t, according to the selected approach in the collection phase.

Test-based. A public static @Arguments method is added to the template class

t (line 14–15 in Figure 3.5). The method returns an array of all the inputs to

the entry method in the order of method parameters. Consider the entry method

with signature public Quaternion multiply(final double alpha) in the class

org.apache.commons.math4.complex.Quaternion from open-source project math [125].

The following @Arguments method is generated:

@Arguments

public static Object[] _args() throws Throwable {

Quaternion quaternion = new Quaternion(

35.0, (double) 0, 57.29577951308232, -1.0);

return new Object[] { quaternion, (double) 17 };

}

where quaternion and 17 are the inputs collected in the collection phase, i.e., ex-

tracted from a generated unit test with the entry method multiply as the last method

call.

Pool-based. A public static @Argument method is created to provide an input for

each parameter (including the receiver) of the entry method according to the type τ

of the parameter (line 17–23 in Figure 3.5). If a primitive input is required, then a

<τ>Val hole API will be used (line 19); otherwise a reference input with the required
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type is randomly picked from the object pool provided from the collection phase

(line 20). If the pool does not contain the type, null is used (line 21). Consider the

entry method trim in the template from Figure 3.2, since it is an instance method

without any parameter, only a single @Argument method arg0 (line 33–37) is created.

The method arg0 uses a randomly picked code sequence from the object pool and

returns an instance of StrBuilder that can be used to invoke the instance entry

method trim.

Finally, Extract returns the template t (line 24 in Figure 3.5). LeJit repeats

the procedure to extract a template for every entry method provided in the list from

the collection phase.

3.3.3 Generation

LeJit obtains concrete programs from every template extracted from the pre-

vious phase. LeJit builds on JAttack to support the generation phase, i.e., gen-

erating programs through an execution-based model. Given a template t, the initial

global state is captured first. Then, the entry method of the template is repeatedly

executed, stopping when all holes are filled or the maximum iterations N has been

reached. Next, the technique outputs a generated program by filling every hole with

corresponding concrete code. This process repeats M times to generate M programs,

with the template state reset after each program generation. (See Section 2.3.3 for

the generation algorithm.)

Extending template support. LeJit enhances JAttack in several aspects to

extend support for templates. (1) JAttack allows only a static method as the

entry method. On the other hand, LeJit introduces the receiver object for the en-

try method, which allows an instance method as the entry method by passing the

receiver’s value from @Argument or @Arguments methods. (2) JAttack does not

support non-primitive static fields in templates, as it resets a static field by saving

and recovering the value. To resolve this, LeJit resets states of template classes by

69



re-invoking static initializers (clinit) [12], thus allowing non-primitive static fields

to be reset in templates. (3) JAttack crashes due to UnfilledHoleException im-

mediately when encountering holes in static initializers, while LeJit adds extra logic

to handle those exceptions when loading (including re-initializing) template classes.

(4) Certain holes in constructors are not supported well by JAttack. For a <τ>Id

hole inside super() or this() calls from a constructor, JAttack can fill the hole with

a field accessed from uninitializedThis, which fails bytecode verification. LeJit

overcomes the limitation by tracking at which execution point in a constructor (when

all INVOKESPECIAL and NEW bytecode instructions are paired up) uninitializedThis

gets initialized and can be used. (5) LeJit introduces a number of new hole APIs for

type casting and improves the checksum utility of JAttack to avoid hash collisions

when hashing an object graph.

Improving generation procedure. LeJit makes two changes to the original gen-

eration procedure of JAttack. (1) One of the advantages of JAttack’s execution-

based generation over static generation is that it knows exactly what gets executed in

a generated program and such information can help generate better programs. How-

ever, JAttack does not leverage the information in its implementation. It simply

outputs any generated program as long as the program compiles. Instead, LeJit

skips certain generated programs that are less likely to trigger JIT compiler opti-

mizations. For instance, LeJit will skip a generated program if the execution stops

even before entering the entry method due to an exception thrown from argument

methods. (2) JAttack renames the class with a unique suffix in every generated

program, e.g., Gen1, Gen2, etc. However, such renaming breaks circular dependen-

cies between the template class and other classes in the same project, which makes

many generated programs not compilable. LeJit disables renaming and keeps the

original class name of the template for all generated programs. When executing a

generated program in the testing phase, LeJit ensures that the compiled classfile of

the generated program appears in the classpath prior to all the other classes of the

original Java source, such that the generated program, rather than the original class
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with the same name in the project, will be used.

3.3.4 Testing

For differential testing, LeJit executes each generated program with various

implementations and levels of JIT compilers, i.e., different JIT configurations. We

define a JIT configuration as a tuple (vendor name, compiler name, version number,

JVM options), for example: (Oracle, HotSpot, 20, -XX:TieredStopAtLevel=1) and

(IBM, OpenJ9, 17.0.6, -Xjit:optlevel=hot). Each generated program is executed

repeatedly with a large number of iterations (to trigger JIT compilation) and outputs

a checksum value in the end. This checksum value is calculated by hashing the

arguments provided to the entry method, the output of the return value from the entry

method in each iteration, and the final state (i.e., static fields) of the entire class [144].

Then, LeJit compares the checksum values from different JIT configurations and

reports a failure if it observes any difference. Additionally, LeJit reports a failure if

the program crashes on some JIT configurations.

3.3.5 Pruning

Not every failure indicates a real issue with JIT compilers. We first discuss the

failures reported due to observed inconsistent checksum values across JIT configura-

tions. We find that most of such failures were caused by either (1) non-deterministic

features of the generated program itself, e.g., random numbers, current timestamps,

hashcode, etc., (2) the inconsistency between JIT configurations themselves, e.g.,

system property java.vm.name and java.vm.info, which contain the JVM’s version

information and Java options used, or (3) discrepancies between JVM implementa-

tions from different vendors, such as HotSpot and OpenJ9, which disagree on the

maximum array size. To alleviate this problem, JAttack reruns the failing program

twice using the interpreter mode (-Xint) of a single JIT configuration, while keeping

the rest of the JIT configuration intact, and reports the failure only when the two
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reruns using interpreter mode give the exact same outputs (Section 2.3.5). However,

this solution can only filter out false positive JIT compiler bugs caused by (1) but

not (2) or (3). LeJit improves the filtering by (a) using various JVMs (e.g., HotSpot

and OpenJ9) and (b) increasing the number of reruns of the failing program from one

to three times. If any of the reruns using interpreter mode still shows inconsistent

checksum values across various JVMs, LeJit considers the failure to be not related

to JIT compilers and thus ignore it as a false positive.

In addition to inconsistency of checksum values across JIT configurations,

crash in execution is another type of failure. When a generated program crashes

while being executed using a particular JIT configuration, JAttack always labels

it as a bug (Section 2.3.5). However, not all crashes are caused by issues with the

JVM and therefore not all are worth reporting to developers. Some crashes are

UnfilledHoleException, which occur due to unfilled holes in the program, which

are left as API method calls during the generation phase but are reached during

execution in the testing phase. In theory, such cases may be caused by incorrect JIT

compilation that leads to a mismatch in program behavior between the generation

and testing phases, which we want to report as a bug. However, many of these

cases result from the aforementioned three reasons that cause inconsistent checksum

values between JIT configurations. For example, non-deterministic features such as

current timestamps may have inconsistent values between the generation phase and

testing phase. This inconsistency can cause disagreement in code paths taken between

the generation phase and the testing phase, e.g., when evaluating if conditions on

timestamps, which can result in unfilled holes that were not reached during generation

but were reached during testing. To address this issue, LeJit reruns the generated

program with various JVMs using interpreter mode if the program reports a crash

due to UnfilledHoleException. If the program does not crash during the rerun,

then LeJit reports a bug. However, if the program still crashes during the rerun,

then LeJit considers the crash as a false positive and skips reporting the failure.

While the pruning approach is simple, with manual inspection on a number
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of cases, we found it sufficiently useful. We also compared our pruning with original

JAttack’s pruning. Our pruning filtered around 96%, while JAttack filters out

around 60%, out of total failures.

3.3.6 Implementation

We implement collection of entry methods, extraction, and pruning as stan-

dalone tools. We extend Randoop [101] to obtain objects used as arguments for

non-primitive types. Finally, we extend JAttack [144] to support generation and

testing phases.

3.4 Evaluation

We assess the value of LeJit by answering the following research questions:

RQ1: What are the contributions of the major components of LeJit?

RQ2: How effective is LeJit compared with the state-of-the-art techniques?

RQ3: What is the impact of holes in various Java language features on LeJit’s bug

detection?

RQ4: What is the impact of different types of templates on LeJit’s bug detection?

RQ5: What critical bugs does LeJit detect in Java JIT compilers?

We first describe the experiment setup (Section 3.4.1) and then answer each of the

research questions (sections 3.4.2-3.4.6).

3.4.1 Experiment Setup

Collection. We use open-source projects as the main input to LeJit for extracting

templates. An alternative was to generate Java programs using one of the techniques
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Table 3.1: Project information and number of holes per hole type. PrimitiveId con-
tains all the <τ>Id holes, and PrimitiveVal contains all the <τ>Val holes, where τ is
one of the primitive types in Java. # Loops is the number of loop limiters.

Project
# Holes

# Loops
∑

PrimitiveId PrimitiveVal Array Arithmetic Shift Relation Logic

vectorz 1,585,341 498,470 187,333 468,965 3,115 207,971 7,960 112,319 2,959,155
math 969,150 391,390 83,093 275,034 6,392 114,672 10,547 67,306 1,850,278
lang 984,373 464,883 73,260 93,359 1,318 190,413 15,680 77,790 1,823,286
text 246,909 86,419 8,648 34,378 0 48,976 3,462 11,943 428,792
compress 178,754 89,706 9,296 17,012 2,668 25,710 3,325 10,163 326,471
zxing 93,637 74,610 10,368 23,204 1,282 17,740 3,364 6,937 224,205
codec 35,414 36,528 5,420 8,103 1,597 3,831 373 1,335 91,266
statistics 31,753 7,271 141 7,825 0 5,110 507 235 52,607
jfreechart 6,253 2,920 287 1,190 12 539 78 182 11,279
numbers 6,441 2,082 22 891 140 1,065 154 123 10,795∑

4,138,025 1,654,279 377,868 929,961 16,524 616,027 45,450 288,333 7,778,134

for testing traditional Java compilers [38, 55], but open-source projects cover a much

broader range of Java features. We search GitHub [54] for 1,000 Java open-source

projects with the most stars, and we also include projects with at least 20 stars

that belong to several popular organizations, e.g., Apache, Google, etc. In total,

we collected 1,793 projects. We further filter by keeping the projects that (1) use

the Maven [121] build system; (2) have a license that permits our use; and (3) have

tests. After this step, there were 161 projects. Then, we attempt to build each

project from its source and create a fat jar [107] for each project. We filter out any

projects that cannot be packaged this way. Lastly, we exclude some projects that

are not compatible with LeJit’s toolchain, e.g., ASM [100], JavaParser [68], and

Randoop [101]. Eventually, there are 62 projects for use.

We run LeJit once using the pool-based approach with all the 62 projects but

stop LeJit early, before the generation phase, in order to collect holes from extracted

templates. We next select the top ten projects with the most holes and loop limiters

(used to avoid introducing infinite loops; see Section 3.3.2) in the extracted templates.

Table 3.1 shows the ten open-source Java projects and associated numbers of holes

and loop limiters; we show the number of holes for each hole type.

In the test-based approach, we configure the test generation to obtain 5,000
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unit tests for each project or for 30 minutes, whichever comes earlier. In the pool-

based approach, we always run test generation for 30 minutes. Lastly, we use Eclipse

Temurin 11.0.18 (Adoptium OpenJDK build) in the collection phase, including build-

ing open-source projects, test generation, and running LeJit itself. We select this

lower version of Java in order to maximize compatibility with open-source projects

and LeJit’s toolchain such as Randoop, i.e., being able to compile most projects into

fat jars and to run Randoop with the projects, with a Java version.

Generation. We generate ten programs from each template, with a three-minute

timeout. We also set a one-minute timeout in the testing phase for executing each

generated program. (We change the value to 50 seconds when later comparing against

JITfuzz for fair comparison.) We use Oracle JDK 17.0.6 to execute templates in the

generation phase. We select a different JDK version for additional differential testing

between the generation and testing phases.

Testing. We test a wide range of JDKs with different vendors and versions during our

experiments. When evaluating LeJit alone including its variants, we use Oracle JDK

20 (HotSpot default and level 1), IBM Semeru 17.0.6.0 (OpenJ9 default and hot level),

and GraalVM Enterprise Edition 22.3.1 (GraalVM default) for differential testing.

When comparing LeJit with JITfuzz and JavaTailor, we also include a custom build

of OpenJDK jdk-17.0.6+10 (HotSpot default and level 1) (see Section 3.4.3). We

collect code coverage over the JVM code using the custom build of OpenJDK. We

separately rerun generated programs to collect code coverage when evaluating LeJit

alone including its variants. We collect code coverage on the fly when comparing

LeJit with JITfuzz and JavaTailor. JITfuzz uses coverage, so we use the same setup

for all the tools.

Pruning. We use reference JIT configurations to rerun three times every failing

program, i.e., a generated program that either has inconsistent outputs across dif-

ferent JIT configurations under test or has crashed in the testing phase. We re-

port such a failing program as a bug if the rerun using reference JIT configurations
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Table 3.2: Comparison of LeJit variants. All the numbers are averages.

# Templates # Programs # Failures # Bugs
Coverage (%)

C1 C2 HotSpot

LeJitt 10,714 90,916 66 3.3 83.8 79.0 49.5
LeJitNoTmpl 14,854 14,854 24 0.7 83.6 78.4 47.9

LeJitp 11,921 99,644 129 5.3 84.4 79.6 50.0
LeJitNoPool 10,185 89,977 56 4.0 84.0 78.7 49.2

does not show any difference or crash (see Section 3.3.5). We use HotSpot with

-XX:TieredStopAtLevel=0 and OpenJ9 with -Xnojit as reference JIT configura-

tions when pruning failures.

Machine. We run all experiments on a 64-bit Ubuntu 18.04.1 desktop with an

Intel(R) Core(TM) i7-8700 CPU @3.20GHz and 64GB RAM.

3.4.2 Contribution of Major Components

We evaluate LeJit using both test-based and pool-based approaches (Sec-

tion 3.3), named LeJitt and LeJitp, respectively. Additionally, we define two base-

lines (LeJitNoTmpl and LeJitNoPool) to help us understand the benefit of using

templates and creating instances for entry methods.

The variant LeJitNoTmpl follows the same collection phase as LeJitt that

collects the last method call as the entry method from every unit test generated.

However, LeJitNoTmpl does not extract any templates, and thus not generate any

programs from templates. Instead, it directly goes to the testing phase and executes

the entry method a large number of times, using just the arguments in the test. This

baseline (indirectly) shows the power of automatically generated tests, obtained on a

randomly selected set of projects, for discovering Java JIT compiler bugs.

We design the variant LeJitNoPool, which extracts a template for every method

in a given project. The only difference (compared to LeJitp) is that LeJitNoPool does

not collect the object pool, when extracting templates, but it rather searches for public

constructors, or static methods without parameters or with only primitive parameters,
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Figure 3.6: The overlap of bugs detected by LeJit variants. LeJitNoTmpl: no
templates/generated programs; LeJitt: LeJit with Test-based approach; LeJitp:
LeJit with Pool-based approach; LeJitNoPool: enhanced JAttack.

or null to construct reference arguments. LeJitNoPool is a superset of the original

template extraction technique presented in evaluation of JAttack (Section 2.4.2);

LeJitNoPool supports more types of holes and more entry methods than JAttack.

LeJitNoPool shares the same generation and testing phases with LeJitp.

Table 3.2 compares the numbers of generated programs, failures, and unique

bugs reported. Note that all the numbers in the table represent averages from three

runs. The various LeJit variants exhibit differences in their running times. Specif-

ically, the slowest variant (LeJitp) required around six days for a single run, on

average. The first two rows compare LeJitt and LeJitNoTmpl. LeJitt executes

much more programs than LeJitNoTmpl, since LeJitNoTmpl does not extract tem-

plates to generate programs. LeJitt also slightly increases code coverage in C1 and

C2 (separate optimizing compilers within HotSpot), as well as in the entire HotSpot.

However, it was interesting to observe that LeJitNoTmpl can even find an average of

0.7 bugs per run. As seen from the second two rows, LeJitp and LeJitNoPool execute

a comparable number of programs and both find a few bugs. LeJitp achieves both

higher coverage and higher number of bugs on average.

Figure 3.6 shows all the bugs we found from the variants and the overlap of dif-

ferent variants. We do not include two bugs found in our preliminary experiments and
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three bugs found during experimenting with various template types (Section 3.4.5).

We can see that both automated generation of instances and template extraction

contribute to detecting the bugs. LeJitt and LeJitp together miss two bugs that

LeJitNoTmpl and LeJitNoPool find. Interestingly, LeJitNoTmpl without any templates

or holes finds two bugs, which shows the effectiveness of traditional automated test

generation even for domain that is not originally targeted.

3.4.3 Comparison with the State-of-the-art

We compare LeJit with JITfuzz [136] (version 3dc8f91), a state-of-the-art

technique for automated Java JIT compiler testing. Additionally, we compare LeJit

with JavaTailor [153] (version bf9421f), a history-driven test program synthesis for

testing JVM. Although JavaTailor does not target JIT compilers per se, it is worth

learning about the relation and potential overlap between LeJit and JavaTailor.

JITfuzz vs. LeJit. To compare against JITfuzz, for a given project, we need to

provide JITfuzz an initial class as the seed, as well as a test class as a starting point

to execute the mutated programs from those seeds. Following the same methodology

as in the previous work [136], we first identify ten classes in the given project with the

highest cyclomatic complexity, and we pick the initial class randomly from these ten

classes. Since the original work did not mention how the test class should be selected,

we randomly pick a test class that imports and instantiates the initial class. To

ensure a fair comparison, we run JITfuzz with the same ten projects (Section 3.4.1).

During our preliminary experiment, we found that JITfuzz does not support tests

using JUnit 5 [127], so we manually migrated the picked test classes to JUnit 4 [72]

in five projects (other projects already used JUnit 4).

We use LeJitt, i.e., with the test-based approach, in order to better control

end-to-end running time by specifying the number of generated tests. (The pool-

based approach uses all the available methods in the projects, which makes it hard to

estimate the time needed.) We run both tools for the same length of time, around six
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Table 3.3: Comparison of JITfuzz and LeJit. *The bug was already found before
using JITfuzz so we did not report it again.

# Programs # Failures # Bugs
Coverage (%)

C1 C2 HotSpot

Func. Line Func. Line Func. Line

JITfuzz 45,352 2,115 *1 70.8 69.7 67.2 64.3 36.6 44.6
LeJitt 96,626 97 0 78.9 77.7 74.6 72.5 39.4 48.0

days, which is longer than used in the JITfuzz evaluation [136] and in recommended

practice [74], while also matching the end-to-end running time of LeJitt. We use

the same timeout, 50 seconds, which is the default setting of JITfuzz, for executing

each single generated program. JITfuzz requires custom debug builds of OpenJDK

with AFL++ toolchain to work, because it needs to collect runtime coverage of JIT

compiler source code [136]. Thus, we build OpenJDK jdk-17.0.6+10 from source [99]

with --enable-debug and --enable-native-coverage and use the debug build as

the JIT compiler under test. Note that LeJit works on both debug and release

builds. We use a debug build for fair comparison (we already ran LeJit on multiple

released binaries in Section 3.4.2). Also, JITfuzz does not use differential testing but

detects only crashes, so we do not use OpenJ9 and GraalVM for LeJit for a fair

comparison; instead we use only default level and level 1 of HotSpot from the custom

debug build of OpenJDK for differential testing required by LeJit. We collect code

coverage of C1 (src/hotspot/share/c1/*), C2 (src/hotspot/share/opto/*), and

the entire HotSpot (src/hotspot/*).

Table 3.3 compares the results from both tools. Note that all the numbers in

the table represent averages from three runs. JITfuzz reports 2,115 failures out of

45,352 programs that have been generated and executed. On the other hand, LeJit

executes 96,626 programs and reports 97 failures. We then analyze and inspect the

failures from both tools. Both tools do not detect new bugs. All the 2,115 failures

reported by JITfuzz are assertion failures (which are checked on debug builds only).

We group the assertion failures by stack traces and error lines in source code within
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HotSpot, and there are only two unique failures. Both are duplicates of an existing

bug JDK-8280126 [97] on optimizing irreducible loops. We do not find any bug

from LeJit’s failures. We believe the reason for this finding is that we collect code

coverage on the fly for the debug build, which impacts the way JIT compilers optimize

generated programs. LeJit detects a number of HotSpot bugs in other experiments

we perform using non-debug builds (Section 3.4.2). LeJit increases line coverage of

C1 by 8.0%, C2 by 8.2%, and HotSpot by 3.4% compared to JITfuzz.

JavaTailor vs. LeJit. JavaTailor [153] performs history-driven test program syn-

thesis to test JVM implementations. More precisely, JavaTailor uses previously re-

ported bugs as seeds to synthesize diverse test programs by combining ingredients

from historical bug-revealing programs. JavaTailor was shown efficient for testing

JVM implementations and here we explore if it can also discover JIT compiler bugs.

We ran JavaTailor three times in the default configuration until completion

(∼8h each run). We inspected the three runs in detail and concluded that findings

are similar across runs, thus no further runs were warranted. We used two versions of

Java, as JavaTailor also performs differential testing: IBM Semeru 17.0.6.0 (OpenJ9

default level) and a custom build of OpenJDK jdk-17.0.6+10 (HotSpot default level)

like in the previous section. We pick these two versions because HotSpot and OpenJ9

were used by JavaTailor’s authors in their evaluation, and we use the custom build

of OpenJDK because we need to collect code coverage of JIT compilers and compare

with LeJit.

As a result of each run, JavaTailor outputs a diff log. We could not find any

existing scripts for processing the diff logs, so we wrote our own to help us classify

failures and perform inspection. Additionally, we wrote scripts to help us try to

reproduce each of the reported failures.

JavaTailor reported 102 differences in the diff log (and each diff corresponds

to one class file that is executed with two JVMs and produces different results). We

semi-automatically classified the reported cases into 7 groups. Table 3.4 shows num-
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Table 3.4: Number of cases of each group reported from JavaTailor.

Group NoRep. NonDet. DiffText VerifyError DiffException NoException Misc.

Number 5 18 39 2 24 7 7

ber of cases of each group. NoRep. includes cases that show no differences when we

tried to reproduce the difference. NonDet. includes cases that non-deterministically

pass or fail (e.g., due to elapsed time being in the output) and are not revealing

any bug. DiffText includes cases that are only reported with different text across

JVMs, but the reported issue is actually the same. VerifyError includes cases when

bytecode verification failed in both JVMs, but the messages were different. DiffEx-

ception includes cases when exceptions are printed in a different order across JVMs.

NoException includes cases when only one of the JVMs throws an exception, but our

further inspection showed that these cases were caused by flags that have different

default values across JVMs. Misc. includes single instance failures that do not fit

into any other group we defined; we found one bug in this group, but the same bug

was previously reported [44].

Regarding code coverage, LeJit increases code coverage of C1 by 3.3%, C2

by 4.0%, and the entire HotSpot by 0.4%, compared to JavaTailor.

In conclusion, JavaTailor can discover JVM bugs, but none were related to

JIT compilers. We also found that the default reporting has many false positives. We

find LeJit and JavaTailor complementary, and each could potentially benefit from

the other; we discuss the combination of the two for future work in Chapter 5.

3.4.4 Impact of Holes in Various Language Features on LeJit’s Bug De-
tection

In order to understand how holes in different language features contribute to

bug detection of LeJit, we perform in-depth analysis on the features within extracted

templates and generated programs.

We analyze three language constructs, i.e., arrays, conditional statements, and
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Table 3.5: Number of templates and programs with different language features. Cond.
is Conditional Statements. R.A. is Reference Arguments.

Project
# Template # Generated Programs

Total Arrays Cond. Loops R.A. Total Arrays Cond. Loops R.A.

codec 11,098 2,476 2,719 4,102 10,414 43,147 19,760 23,244 23,474 39,529
compress 8,269 1,036 4,133 1,818 7,794 62,431 7,585 35,774 15,713 58,578
jfreechart 11,041 215 2,073 554 10,656 61,883 1,894 13,294 4,117 59,587
lang 18,602 3,491 9,156 6,050 16,136 117,061 28,995 78,002 53,117 100,349
math 20,692 3,964 10,116 5,311 18,097 153,912 33,044 84,054 43,810 139,857
numbers 18,021 826 6,473 2,449 1,971 98,218 8,260 63,496 15,599 9,322
statistics 10,010 11 4,396 159 9,188 44,181 37 34,634 810 38,622
text 11,532 2,423 5,105 3,506 10,752 66,395 18,975 46,965 31,068 61,473
vectorz 23,005 6,031 11,277 6,904 21,718 175,814 49,594 94,726 58,759 165,803
zxing 10,925 1,660 3,767 2,375 10,145 63,136 13,440 30,993 19,417 57,703∑

143,195 22,133 59,215 33,228 116,871 886,178 181,584 505,182 265,884 730,823

loops, and one other language feature, i.e., reference arguments. If a filled hole is inside

a language construct (e.g., a hole is inside a loop), then we say the generated program

that contains the filled hole has the language construct, and we also say the associated

template from which the generated program is generated has the language construct.

Similarly, we also measure how many templates and generated programs use an entry

method that needs an argument of non-primitive (reference) type, which means the

arguments are obtained by generated tests. We say such templates and generated

programs have reference arguments. Table 3.5 shows the numbers of templates and

generated programs that use the four language features. We can see that a substantial

number of templates and programs need non-primitive arguments.

Similarly, we say a bug has a language feature if any generated program that

exposes the bug (i.e., failure due to bug) has the language feature. Note that we do

not claim that the presence of a feature implies that the bug is related to the feature

or the feature is the root cause of the bug. Table 3.6 shows the numbers of failures

due to bugs and unique bugs that use various language features. In conclusion, LeJit

well explores the four language features and holes in each of these features contribute

to the unique bugs discovered.
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Table 3.6: Impact of Java language features on bugs. Cond. is Conditional State-
ments. R.A. is Reference Arguments. *Bugs may repeat across projects, and we show
the number of unique bugs across all projects.

Project
# Failures due to Bugs # Bugs (Unique)

Total Arrays Cond. Loops R.A. Total Arrays Cond. Loops R.A.

codec 5 1 3 1 5 3 1 2 1 3
compress 6 1 5 1 6 2 1 1 1 2
jfreechart 0 0 0 0 0 0 0 0 0 0
lang 24 6 18 14 23 2 1 2 2 2
math 21 11 19 10 13 6 4 6 4 4
numbers 0 0 0 0 0 0 0 0 0 0
statistics 1 0 0 0 0 1 0 0 0 0
text 2 1 2 2 2 2 1 2 2 2
vectorz 107 42 95 91 93 5 3 5 5 5
zxing 8 8 2 8 0 1 1 1 1 0∑

174 70 144 127 142 10* 7* 8* 8* 9*

Table 3.7: Results when using a specific set of types of holes.

<τ>Id() <τ>Val()
arithmetic()

& shift()

relation()

& logic()
All

#Templates 13,090 12,139 13,606 13,682 12,061
#Programs 105,759 87,230 59,917 64,906 102,670
#Failures 106 29 39 70 131
#Bugs 3 1 3 4 4

3.4.5 Impact of Template Types on LeJit’s Bug Detection

To explore how different types of templates affect LeJit’s bug detection, we

extract different sets of templates from the same ten projects (Section 3.4.1). We

modified the template extraction algorithm (Figure 3.5) so that each extracted set of

templates contains a single set of specific types of holes out of (1) <τ>Id, (2) <τ>Val,

(3) arithmetic() and shift(), (4) <τ>relation and <τ>logic. We also extract

a set of templates with all types of holes, which is the default setting. Other than

the extraction phase, we use the same methodology and configuration as described

in Section 3.4.1 to run LeJit with the five sets of templates. Table 3.7 shows the

numbers of templates, generated programs, reported failures and bugs from all five

sets of templates. The set of templates with all types of holes reports the most

number of bugs. Out of the other four sets of templates with only a single set of

holes, the relation() and logic() holes reports the most number of bugs, but even
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Table 3.8: Detected bugs in HotSpot, OpenJ9 and GraalVM using LeJit; 11 bugs
were previously unknown.

JVM Bug ID Type JDK Versions Status CVE Duplicates

GraalVM GR-45498 Diff 17, 20 Fixed - -

HotSpot

JDK-8301663 Diff 18, 19, 19.0.2 Fixed - JDK-8288064
JDK-8303946 Diff 8, 11, 17, 19, 20, 21 Confirmed - -
JDK-8304336 Diff 17, 19, 20, 21 Fixed CVE-2023-22044 -
JDK-8305946 Crash 17, 19, 20, 21 Fixed CVE-2023-22045 -
JDK-8325216 Crash 17, 18, 19, 20, 21 Fixed - JDK-8319793

OpenJ9

17066 Crash 8, 11, 17, 18 Fixed - -
17129 Diff 8, 11, 17, 18 Fixed - -
17139 Diff 8, 11, 17, 18 Fixed - -
17171 Crash 11, 17, 18 Fixed - -
17212 Crash 8, 11, 17, 18 Fixed - 15363
17249 Diff 8, 11, 17, 18 Fixed - -
17250 Diff 17, 18 Fixed - -
18802 Crash 8, 11, 17, 21 Fixed - 17045
18803 Crash 11, 17, 21 Fixed - -

the simplest set of holes, i.e., constant replacement (<τ>Val), plays an important role.

Furthermore, we discovered three additional JIT compiler bugs using these various

sets of templates.

3.4.6 Detected Bugs

Table 3.8 lists the bugs that LeJit detected. So far, we have discovered and

reported 15 bugs, 11 of which are previously unknown, including two CVEs. We show

(in Figure 3.7–3.10) and describe four bugs that encompass a variety of JIT compiler

issues.

Arithmetic mis-compilation. A mis-compilation occurred when the OpenJ9 JIT

compiler performed a modular operation with parameter passing (Figure 3.7). We

discovered the bug using a template created from math [125]. The issue lies in an

incorrect reuse of a register whose value changes after a floating-point remainder

operation.

Incorrect elimination of range checks. From a template extracted from math [124],

we discovered a HotSpot JIT compiler mis-compilation bug where the range check

for array accesses was incorrectly eliminated, which missed throwing exceptions and
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1 public class C {

2 double q0, q1, q2, q3;

3 C(double a0, double a1, double a2, double a3) {

4 q0 = a3; q1 = a1; q2 = 0; q3 = 0; }

5 static double m(double d) { C c = new C(0, 1.0, 0, d % d); return c.q1; }

6 public static void main(String[] args) {

7 double sum = 0;

8 for (int i = 0; i < 100_000; ++i) {

9 sum += m(1.0); } // m(1.0) expected to be 1.0 returns 0.0.

10 System.out.println(sum); } } // expected 100000.0.

Figure 3.7: Arithmetic mis-compilation (OpenJ9 17129).

1 public class C {

2 static void m(int n) {

3 int[] a = new int[n];

4 for (int i = 0; i < 1; i++) { int x = a[i % -1]; } }

5 public static void main(String[] args) {

6 int count = 0;

7 for (int i = 0; i < 1000; ++i) {

8 try { m(0);

9 } catch (ArrayIndexOutOfBoundsException e) { count += 1; } }

10 System.out.println(count); } } // expect 1000.

Figure 3.8: Incorrect elimination of range checks (HotSpot JDK-8304336).

produced incorrect results (Figure 3.8). Upon reporting the bug, Oracle developers

promptly confirmed the issue. They classified the bug as a CVE and rolled out the

fix in the next Critical Patch Update.

Erroneous loop condition evaluation. Execution of OpenJ9 JIT-compiled code

faced a situation where a loop condition was incorrectly evaluated as true, enabling

the loop body to run (Figure 3.9). However, the loop body should never execute, and

this correct behavior was observed in non-JIT executions. LeJit flagged this issue as

a bug using a template from codec [122]. IBM developers confirmed the bug within

a day.

Standard library mis-compilation. An incorrect output occurred when using

GraalVM JIT compilation with the String getBytes method (Figure 3.10). The
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1 public class C {

2 static int m(int len) {

3 int[] arr = new int[8];

4 for (int i = 10000000, j = 0; (boolean) (i >= 1) && j < 100; i--, j++) {

5 // should not enter inner loop.

6 for (int k = 0; len < arr.length; ++k) { int x = 1 / 0; }

7 } return 0; }

8 public static void main(String[] args) {

9 int sum = 0;

10 for (int i = 0; i < 100_000; ++i) {

11 try { m(13);

12 } catch (ArithmeticException e) { sum += 1; } }

13 System.out.println(sum); } } // expected 0.

Figure 3.9: Erroneous loop condition evaluation (OpenJ9 17249).

1 static import java.nio.charset.StandardCharsets;

2 public class C {

3 static int m(String s) {

4 byte[] arr = s.getBytes(ISO_8859_1);

5 return arr[2]; }

6 public static void main(String[] args) {

7 long sum = 0;

8 for (int i = 0; i < 10_000_000; ++i) { sum += m("\u8020\000\000\020"); }

9 System.out.println(sum); } } // expected 0

Figure 3.10: Standard library mis-compilation (GraalVM GR-45498).

generated program by LeJit emerged from a template based off code from codec [123].

The developers confirmed the bug within one day.

Bugs detected with LeJit are presented in an easily digestible manner. Gen-

erated programs are easy to minimize and understand, because LeJit extracts tem-

plates from real-world Java programs and the minimum example programs we submit-

ted are Java source code. Developers were able to quickly understand our reports and

reproduce or further minimize source code as needed. Many reports were confirmed

by the first 48 hours. In contrast, bytecode files generated by some tools require

substantial effort to understand by compiler developers [98].
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3.5 Limitations

When we compared LeJit with JITfuzz, we used only the test-based approach,

and we were unable to successfully run another tool: JOpFuzzer [69]. Also, when

we evaluated LeJit variants, we did not attempt to match end-to-end duration of

LeJitNoTmpl, or LeJitNoPool, and end-to-end duration of LeJitt, or LeJitp. The

randomness could impact the experiment results, so we run each experiment three

times, as we already described.

LeJit has enhanced JAttack to support non-primitive static fields in tem-

plates by re-initializing the template class, but LeJit is limited on re-initializing

other classes in dependencies. While JAttack’s exception handling has been en-

hanced to handle exceptions thrown from class loading and initializing, LeJit does

not handle errors directly thrown from JVM in the generation and testing phase, e.g.,

StackOverflowError, OutOfMemoryError, etc. These shortcomings sometimes left

unfilled holes that were supposed to be filled, leading to false positives in the testing

phase. We will further explore re-initializing all classes in dependencies and better

handling of JVM errors.

Ethical considerations. To avoid “spamming” open-source community, we submit

a bug report only when we can reproduce the bug on the latest release of the affected

JDKs. We also tried our best to detect duplicates and minimize the programs that

reproduce the bugs.

3.6 Conclusion

We presented a framework, LeJit, which enables fully automated end-to-end

template-based testing of JIT compilers. LeJit can create a template from any Java

method, and it automatically inserts holes and generates necessary arguments for

the template. To obtain instances of complex types needed for extracted templates,

LeJit uses novel techniques built on automated test generation. We have extensively

evaluated LeJit by generating 90,916 programs and discovered 15 bugs in three
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popular and widely used compilers. Our findings show the power of automating

template extraction via LeJit and the power of scaling experiments without humans

in the loop, as well as complementary power compared to the state-of-the-art tools

for JIT compiler and JVM testing techniques. We believe that LeJit should become

an integral part of continuous testing for any Java JIT compiler.
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Chapter 4: Related Work

In this chapter, we describe the work most related to this dissertation. First,

we review compiler testing in general (Section 4.1). Next, we describe work on Java

JIT compiler or JVM testing using grammar-based, mutation-based and template-

based approaches (Section 4.2), and also review work on testing JIT compilers of

languages other than Java (Section 4.3). Then, we discuss the test oracle problem

in compiler testing (Section 4.4) and test input generation in general (Section 4.5).

Finally, we summarize the related work on JIT compiler verification (Section 4.6) and

security on JIT compilers (Section 4.7).

4.1 Compiler Testing in General

There is a large body of work on compiler testing, systematically reviewed in

recent surveys [25, 120]. There are mainly three approaches to generating programs

as test inputs: grammar-based, mutation-based, and template-based.

The grammar-based generation [3, 9, 24, 45, 84, 85, 88, 90, 92, 106, 114, 139,

143] uses the grammar production rules of the language to generate programs. For

example, Csmith [139] is a well-known tool for testing C compilers by randomly gen-

erating C programs, which found bugs in mainstream compilers [140, 141]. Mutation-

based fuzzing [22, 31–33, 46, 52, 63, 69, 76, 105, 136, 153] creates new programs to

test compilers by mutating existing programs. LangFuzz [63] is a representative early

work and implemented to test JavaScript engines. It randomly picks code fragments

in existing programs and replaces the fragment with other possible fragments collected

from existing programs. Template-based approach [34, 51, 115, 116, 152] creates pro-

grams via filling placeholders in predefined templates. For instance, SPE [152] stati-

cally exhaustively enumerates possible variable occurrences to fill the placeholders in

the given skeleton program (template). JAttack is the first dynamic template-based
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approach to testing Java JIT compilers, and LeJit sits in between the mutation-based

and template-based approaches.

4.2 Java JIT Compiler / JVM Testing

Existing works on testing Java JIT compilers or JVM mainly fall in grammar-

based and mutation-based approaches.

4.2.1 Grammar-Based

These tools use the grammar production rules of the Java language, or the Java

bytecode language, to generate programs in Java source code, or in Java bytecode,

respectively, as test inputs to compilers. Java* Fuzzer [9] is a grammar-based tool that

generates random Java programs to detect crashes, hangs and incorrect calculations

of JVM. Sirer and Bershad [114] proposed lava to generate from production grammars

Java bytecode to test JVM. Yoshikawa et al. [143] proposed an approach for generating

Java bytecode following grammar for testing Java JIT compilers.

4.2.2 Mutation-Based

This approach generates new programs by mutating existing programs, either

in Java source code or bytecode. Classfuzz [32] and its follow-up Classming [33]

mutate seed classfiles (in Java bytecode) by modifying their syntactic structures,

e.g., renaming fields, changing modifiers, etc., and by modifying control and data

flow, e.g., inserting or deleting goto and return statements. SJFuzz [137] improves

Classming [33] by introducing edit distance [79] to diversify mutant programs when

scheduling seeds and mutation operators. While such tools guide the mutation process

using a coverage-guided algorithm, in order to maximize the coverage of the tested

JVM, many crashes are still found in the early verification stage without testing

deeper logic within JVM such as JIT compilers. JITfuzz [136] is also a coverage-

guided Java JIT compiler fuzzer, but it introduces novel mutation operators designed
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for JIT compilers, e.g., scalar-replacement-activating mutator.

On the other hand, JavaTailor [153] generates programs from bug-revealing

programs in previous bug reports from OpenJDK and OpenJ9. More precisely, Ja-

vaTailor combines code ingredients from these bug-revealing programs to create di-

verse programs in Java bytecode. VECT [52] improves JavaTailor [153] via group-

ing code ingredients by code vectorization and then selecting representatives of each

group, so as to better diversify the generated programs. ComFuzz [142] also learns

from bug-revealing programs from historical bug cases. It starts with deep learning

models to generate programs and then leverages predefined mutation rules to create

final programs.

Some techniques introduce new dimensions on the test oracle (which we will

discuss more in Section 4.4) over the traditional mutation-based fuzzing approach.

JOpFuzzer [69] uses different JIT compiler optimization options when running a

mutation-created program using Java JIT compilers. It picks options according

to what is mutated in the program. Artemis [80] compares various JIT compila-

tion choices during differential testing, i.e., diverse combinations of optimized/de-

optimized methods for the same sequence of method invocations.

4.2.3 Template-Based

To the best of our knowledge, JAttack opened a new area: template-based

testing for Java JIT compilers. JAttack generates Java programs by utilizing the

structures of a given template, and explores possibilities by filling holes. On the

one hand, unlike the grammar-based approach that generates programs from scratch

following the grammar, compiler developers can use their best intuition and knowl-

edge when writing the template for JAttack, and have full control of the space

that should be tested and the way generated programs should evolve. On the other

hand, in contrast to the mutation-based approach, JAttack has several differences.

(1) Mutation-based approaches use a predefined set of mutation operators. However,
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each hole in a template has its own set of values (and the set can be dynamically deter-

mined; see the next point). (2) JAttack executes templates to fill holes dynamically

(rather than statically), which brings unique advantages: (a) uses meaningful vari-

ables to fill holes; (b) allows hole construction with runtime information, e.g., lengths

of arrays; (c) allows JAttack to establish which holes are in dead code and, in the

generation phase, focus on exploring the reachable holes. (3) JAttack can fill multi-

ple holes simultaneously during the execution of the template, which is more similar

to higher-order mutation [70]. Compared with existing work on template-based com-

piler testing in other languages, e.g., SPE [152] for C language, JAttack generates

concrete programs by executing templates, instead of statically filling holes, which

allows developers to use values available at runtime to construct holes. JAttack

also allows richer expressions, e.g., arithmetic expressions, relation expressions, logic

expressions, etc., to be generated in holes, besides variables.

LeJit complements JAttack by automatically creating templates from real-

world Java programs, through converting concrete expressions into holes and gen-

erating glue code to create arguments with non-primitive types. Thus, LeJit with

JAttack together blends the mutation-based and template-based approach. Al-

though the blending is similar in nature to concepts in mutation testing [40], via

creating templates and then using them to generate concrete programs, the afore-

mentioned dynamic execution of templates by JAttack, and extracting templates

and obtaining objects necessary for running templates provided by LeJit make it a

novel approach that complements existing techniques.

4.3 JIT Compiler Testing for non-Java Languages

In addition to Java, there has been research on testing JIT compilers of other

languages. Notably, a lot of research efforts have been dedicated to testing JavaScript

engines. jsfunfuzz [89] is a grammar-based JavaScript engine testing tool, similar to

Java* Fuzzer [9], and it follows the JavaScript grammar and generates JavaScript
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programs. Fuzzilli [58], a mutation-based JavaScript engine testing tool, proposes

a new intermediate representation language named FuzzIL to express the desired

mutation of abstract syntax trees of JavaScript programs. Die [105] performs type-

preserving and structure-preserving mutation on existing JavaScript programs that

revealed bugs. Similar to our work, more recent works considered JIT compilers

inside JavaScript engines. JITPicker [14] injects state probes which computes hash

for variables during execution, to compare the runtime behavior between JavaScript

interpreters and JIT compilers. However, it needs to modify JavaScript engines to

make sure the probes will not affect JIT compiler optimization. FuzzJIT [133] mutates

code elements related to JIT compilers, e.g., arrays, objects, etc., and it also generates

JavaScript programs that is test-oracle integrated, i.e., the comparison between the

interpreter and the JIT compiler is done inside the program.

As for other languages, Fuzzlyn [91, 92] is a grammar-based testing tool of

C# JIT compilers, similar to Java* Fuzzer [9] and jsfunfuzz [89]. Ranger [106] treats

the Smalltalk JIT compiler as a white-box and uses concolic testing [56, 111] on the

interpreter to generate test inputs to the Smalltalk JIT compiler.

4.4 Test Oracles for Compiler Testing

The test oracle problem is a fundamental problem in the area of compiler test-

ing, i.e., how to determine if the compiler compiles the given program correctly. A

crash during compilation is obviously a red flag, but it is not trivial to determine

correctness when the compilation finishes normally. To address the challenge, re-

searchers have mainly used two approaches: differential testing [87] and metamorphic

testing [29].

McKeeman [87] first proposed differential testing as to complement regres-

sion testing. Most of aforementioned work on compiler testing (Section 4.1–4.3),

e.g., [32, 139, 152], uses differential testing to determine a mis-compilation bug when

compilation does not crash. In general, it is required that at least two compilers
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are implemented based on the same specification, and then a program is run us-

ing these compilers separately. If the compilers do not agree on the results, then

there is a bug in some compiler(s). In practice, in terms of different implementa-

tion of the same compiler specification, most researchers consider different vendors,

versions, and optimization levels (including comparing interpreters and JIT compil-

ers) [133, 136, 153]. Some researchers also incorporate domain-specific factors into

differential testing when testing Java JIT compilers. JOpFuzzer [69] uses JIT com-

piler optimization options as a new dimension, and Artemis [80] compares various

combinations of optimized/de-optimized methods for the same sequence of method

invocations. Additionally, SpecTest [110] includes executable semantics, e.g., K se-

mantics for Java [15], as an implementation of the compiler in differential testing.

JEST [104] generates assertions from JavaScript language specifications in programs

that will be used as test inputs to JavaScript engines, and in this way includes the

language specification in differential testing.

Metamorphic testing [29] is another approach to addressing the test oracle

problem, which constructs metamorphic relations that describe how a particular

change to the test input impacts the test output. The most widely used relation

in the area of compiler testing is the equivalence relation. Le et al. [76] proposes a

method named Equivalence Modulo Inputs (EMI) to test compilers, which converts

an original program into multiple equivalent, but seemingly different, programs and

compares results of running these programs after them being compiled. If the re-

sults are different, then a compiler bug is found. This method allows to test even a

single compiler since it does not need to compare between different compilers. Re-

searchers have extended the concept of EMI to test C/C++ compilers [77, 90, 118],

OpenCL compilers [83], OpenGL [41], Simulink compilers [35], etc. The ways to ob-

tain equivalent variants in the aforementioned works include inserting/deleting dead

code, applying predefined transformation rules, etc. Chen et al. [23] applied EMI

on generated programs by Csmith [139], and used the created equivalent variants to

test GCC and LLVM separately. They compared the effectiveness of discovering bugs
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in this way (using metamorphic testing) with the original Csmith (using differential

testing), and showed that differential testing and metamorphic testing techniques can

complement each other to a certain degree.

4.5 Test Input Generation

Compiler testing techniques generate programs as test inputs to a specific kind

of software, i.e., compilers. A lot of research has also explored test input generation

for general software [4, 55, 56, 101, 112]. We describe some notable works in test

input generation for Java programs.

JUnit tests can be automatically generated using Randoop [101] and Evo-

Suite [48] for a given set of classes under test. In theory, the tests generated from

such tools can be directly used to test Java JIT, and we implemented such a prototype

using Randoop and evaluated its bug-discovery effectiveness within our evaluation of

LeJit (see Section 3.4.2).

Popularized by QuickCheck [36], another approach is to allow developers

to write generators from which valid test inputs can be obtained. ASTGen [38],

UDITA [55], and Tempo [7] use the generators to exhaustively enumerate all possible

paths through the generators up to a given bound. JQF [102] integrates coverage-

guided fuzzing into the QuickCheck-style framework for testing Java programs. The-

oretically, these tools can be used to test Java JIT compilers as well, but they would

require developers to write generators for Java programs.

Additionally, symbolic execution [73] has been used in test input generation,

such as DART [56], JPF [132], etc. Although such tools can precisely explore different

paths and produce test inputs exercising new behaviors, the path explosion problem

prevents them from being scalable.
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4.6 JIT Compiler Verification

Aside from testing, verification is another technique to ensure correctness of

software. There has been verified static compilers such as CompCert [78], CakeML [75],

etc. Shingarov [113] experimented with a proof of concept formal verification of JIT

compilers by symbolic execution. Guo and Palsberg [59] discussed the soundness of

trace-based JIT compilers. Flückiger et al. [47] and Barrière et al. [10] formally verified

speculative optimization and deoptimization in a JIT compiler. Barrière et al. [11]

presented a JIT compiler model with dynamic generation of native code, which is for-

mally verified in Coq reusing CompCert and its correctness proofs. In addition, there

are other works on verifying range analysis routines of JavaScript JIT compilers with

SMT solvers [18], validating semantic equivalence of assembly language output from

various versions of C# JIT compilers [62], and building formally verified in-kernel

JIT compilers [130, 134]. Orthogonal to these efforts on verification, our work focuses

on testing, designed to check correctness of widely used Java JIT compilers, including

HotSpot, OpenJ9, etc.

4.7 Security on JIT Compilers

JIT compilation brings unique challenges to security. Gawlik and Holz [53]

reviewed JIT spraying attacks, and Lian et al. [81, 82] extended JIT spraying attack

to ARM. Chen et al. [27] proposed a defense of JIT spraying attacks by controlling

the execution of the JIT-compiled code, while others [28, 65, 135, 138] use randomiza-

tion and obfuscation to defend from these attacks. Athanasakis et al. [6] showed that

JavaScript JIT engines are exploitable using solely dynamically generated gadgets.

Song et al. [117] demonstrated the feasibility of exploiting race conditions to mali-

ciously modify code cache, and proposed secure dynamic code generation. Frassetto

et al. [49] proposed a generic data-only attack against JIT compilers that enables arbi-

trary code-execution, and also proposed a defense to mitigate such attacks. Brennan

et al. [16] demonstrated how JIT compilation can be exploited for timing side-channel
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attacks. Brennan et al. [17] also presented a technique for automatically detecting

such JIT-induced timing side-channel attacks, and Qin et al. [108] proposed an ap-

proach to eliminating such JIT-induced timing side-channel leaks. Ansel et al. [5]

introduced general mechanisms for safely and effectively sandboxing dynamic lan-

guage runtimes, including JIT compilers. Niu and Tan [93] and Zhang et al. [151]

proposed approaches to securing JIT compilers through control-flow integrity [1]. Al-

though JAttack and LeJit are designed to detect any correctness bugs, we did

discover several security vulnerabilities (e.g., CVE-2020-14792 [128]) inside Java JIT

compilers.
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Chapter 5: Future Work

In this chapter, we describe ways in which JAttack and LeJit can be im-

proved and extended from the five aspects, i.e., improving program generation, opti-

mizing testing procedure, refining testing results, and testing other software systems.

5.1 Improving Program Generation

Holes for method or constructor invocation. Although JAttack has pro-

vided APIs for writing holes for many Java language features, e.g., primitive values,

variables, logical expressions, etc. There are several Java language features to be

supported as written using holes in JAttack, including holes for selecting methods

or constructors. Such a hole can allow JAttack to both explore a wider search space

of a template program and to test more JIT compiler optimizations [145, 147], e.g.,

method inlining.

Smarter searching while filling holes. Currently JAttack fills a hole by ran-

domly choosing a value within the defined search space of the hole, and filling of

multiple holes is independent to each other (although JAttack does skip filling un-

reachable holes due to its execution-based nature). A smarter strategy of filling holes

can more efficiently generate programs that expose bugs and can also explore greater

search space defined by the template. Similar to some mutation-based compiler test-

ing techniques [136, 137], some metrics can be leveraged to guide hole filling: e.g.,

code coverage of compilers under test, the types/shapes of intermediate representa-

tion nodes in compilation, etc. Also, considering relations between holes, i.e., filling

a hole according to how surrounding holes are filled, can maximize the effectiveness

of the entire template.

Using historical bugs cases to create templates. LeJit creates templates from

existing Java programs in open-source projects. Existing works [52, 142, 153] have
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shown effectiveness of discovering new bugs from using the programs revealing his-

torical bugs. We expect the regression tests related to historical JIT compiler bugs

from OpenJDK and OpenJ9 repositories to be another valuable source of creating

templates.

5.2 Optimizing Testing Procedure

De-duplication of templates and generated programs. We have found mul-

tiple templates and/or generated programs may reveal the same JIT compiler bug.

Therefore, de-duplicating templates and generated programs may significantly speed

up the testing procedure, explore a greater search space, and potentially lead to more

new bugs. On the other hand, EMI techniques [76] (see section 4.4) have shown that

even semantically equivalent programs may have different impacts on compilers. JIT

compilers may still optimize two semantically equivalent programs differently based

on their code structure. Determining which programs are duplicated w.r.t. how JIT

compilers should optimize them is worth exploring further.

Test prioritization and test-suite reduction. The main running time of end-

to-end Java JIT compiler testing using JAttack and LeJit is spent on executing

the generated tests with the tested compilers. Existing works have used techniques of

test prioritization and test-suite reduction to accelerate the testing procedure [21, 26].

Similar techniques can also be used to speed up the execution of programs generated

from templates.

5.3 Refining Testing Results

Decreasing the false positive rate. While we reported a failure as a potential JIT

compiler bug only when rerunning at the interpreter does not show inconsistency, this

rerunning is not sufficient to filter out all false positives. In our manual inspection

of the reported failures after the rerunning, we still found many false positives due
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to non-deterministic features used in the programs, e.g., Object.hashCode(), ran-

domness, current timestamps, etc. One way to to reduce the false positive rate is to

instrument associated Java libraries to fix the non-deterministic values [60].

Identifying duplicated bugs. In our experiments, the number of unique bugs was

far less than the number of failures, because multiple failures exposed a same bug. It

is also time-consuming to manually check if every failure is a duplicated bug to one of

the bugs we have found. Such process of identifying duplicated bugs can be partially

automated via comparing their crash stack traces, or program similarity [30, 64].

Reducing buggy programs. Since we used real-world Java programs to create

templates, the templates and generated programs were usually large and compli-

cated. Once a generated program detects a JIT compiler bug, we always manually

reduced the program before we reported the bug, so that developers could locate and

fix the bug more easily. Researchers have developed several techniques for reduc-

ing and debugging programs, e.g., ddmin [149, 150], C-Reduce [109], Perses [119],

and VeDebug [20], which can be applied to automate the process of reducing buggy

programs.

Flakiness of JIT compiler bugs. Not all JIT compiler bugs we detected are repro-

ducible each time when run due to the non-deterministic nature within JIT compilers

(which is different from non-deterministic features within programs, discussed in the

first paragraph of this section). For example, in one of the generated programs for

template M4 (Section 2.5), we could not always observe failure (crashing the JVM)

every time we run on the same JIT compiler. We could have missed this bug because

of an unfortunate non-crash run. Thus, to explore and control the non-deterministic

nature within JIT compilers can potentially reveal more new JIT compiler bugs (from

false negatives).
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5.4 Testing Other Software Systems

While we use Java JIT compilers to demonstrate the usefulness of template-

based testing, it will be easy to migrate JAttack and LeJit to test other soft-

ware systems that also take Java programs as input, such as refactoring tools (e.g.,

Eclipse [43]). Also, it is valuable to explore the possibilities to use template-based

techniques to test JIT compilers of non-Java languages, such as C#, JavaScript, etc.
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Chapter 6: Conclusion

Compilers are an integral part of the software development toolchain, and thus

their correctness is of utmost importance. However, existing techniques for testing

compilers either are time-consuming or lack the flexibility for compiler developers to

apply their domain knowledge effectively. To address these challenges, this disser-

tation introduces JAttack and LeJit: JAttack enables template-based compiler

testing that allows compiler developers to write templates based on their insights, and

LeJit is a unified automated testing framework around JAttack, which streamlines

creation of templates from existing Java code and testing of Java JIT compilers.

JAttack allows developers to write templates in the same language as the

compiler they are testing (Java), enabling them to leverage their domain knowledge

to set up a code structure likely to lead to compiler optimizations while leaving holes

representing expressions they want explored. JAttack executes templates, exploring

possible expressions for holes and filling them in, generating programs to later be run

on compilers. Through application of JAttack, we found seven bugs in the HotSpot

JIT compiler. Five of them were previously unknown, including two unknown CVEs.

LeJit is an overarching automated testing framework wrapping JAttack.

LeJit can create a template from any Java method, and it automatically inserts

holes and generates necessary arguments for the template. To obtain instances of

complex types needed for extracted templates, LeJit uses novel techniques built on

automated test generation. Using LeJit, we discovered 15 additional bugs in three

popular and widely used Java JIT compilers (HotSpot, OpenJ9 and GraalVM), 11 of

which were previously unknown, including two unknown CVEs.

Our findings show the power of combining developers’ domain knowledge (via

templates) with automated testing, and we believe that JAttack and LeJit should

be in integral part of the testing process for any Java JIT compiler.
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[106] Guillermo Polito, Stéphane Ducasse, and Pablo Tesone. Interpreter-guided

differential JIT compiler unit testing. In Programming Language Design and

Implementation, pages 981–992. ACM, 2022. https://doi.org/10.1145/

3519939.3523457.

[107] Priya Khaira-Hanks. What is a Java Uber-JAR and why is it useful?, 2023.

https://blog.payara.fish/what-is-a-java-uber-jar.

[108] Qi Qin, JulianAndres JiYang, Fu Song, Taolue Chen, and Xinyu Xing. De-

JITLeak: Eliminating JIT-induced timing side-channel leaks. In Joint Meet-

ing of the European Software Engineering Conference and the Symposium

on the Foundations of Software Engineering, pages 872–884. ACM, 2022.

https://doi.org/10.1145/3540250.3549150.

[109] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun

Yang. Test-case reduction for C compiler bugs. In Programming Language

Design and Implementation, pages 335–346. ACM, 2012. https://doi.org/

10.1145/2345156.2254104.

[110] Richard Schumi and Jun Sun. SpecTest: Specification-based compiler testing.

In Fundamental Approaches to Software Engineering, pages 269–291. Springer,

2021. https://doi.org/10.1007/978-3-030-71500-7_14.

117

https://doi.org/10.1109/ICSE43902.2021.00015
https://doi.org/10.1109/SP40000.2020.00067
https://doi.org/10.1109/SP40000.2020.00067
https://doi.org/10.1145/3519939.3523457
https://doi.org/10.1145/3519939.3523457
https://blog.payara.fish/what-is-a-java-uber-jar
https://doi.org/10.1145/3540250.3549150
https://doi.org/10.1145/2345156.2254104
https://doi.org/10.1145/2345156.2254104
https://doi.org/10.1007/978-3-030-71500-7_14


[111] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A concolic unit testing

engine for C. In Joint Meeting of the European Software Engineering Conference

and the Symposium on the Foundations of Software Engineering, pages 263–272.

ACM, 2005. https://doi.org/10.1145/1081706.1081750.

[112] Rohan Sharma, Milos Gligoric, Andrea Arcuri, Gordon Fraser, and Darko Mari-

nov. Testing container classes: Random or systematic? In FASE, pages 262–

277. Springer, 2011. https://doi.org/10.1007/978-3-642-19811-3_19.

[113] Boris Shingarov. Formal verification of JIT by symbolic execution. In Inter-

national Workshop on Virtual Machines and Intermediate Languages, 2019.

[114] Emin Gün Sirer and Brian N. Bershad. Using production grammars in software

testing. In Conference on Domain-Specific Languages, pages 1–13. ACM, 2000.

https://doi.org/10.1145/331960.331965.

[115] Armando Solar-Lezama. Program sketching. International Journal on Soft-

ware Tools for Technology Transfer, 15(5–6):475–495, 2013. https://doi.

org/10.1007/s10009-012-0249-7.

[116] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vi-

jay Saraswat. Combinatorial sketching for finite programs. In International

Conference on Architectural Support for Programming Languages and Operating

Systems, pages 404–415. ACM, 2006. https://doi.org/10.1145/1168857.

1168907.

[117] Chengyu Song, Chao Zhang, Tielei Wang, Wenke Lee, and David Melski.

Exploiting and protecting dynamic code generation. In The Symposium

on Network and Distributed System Security. The Internet Society, 2015.

https://doi.org/10.14722/NDSS.2015.23233.

[118] Chengnian Sun, Vu Le, and Zhendong Su. Finding compiler bugs via live

code mutation. In International Conference on Object-Oriented Programming,

118

https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1007/978-3-642-19811-3_19
https://doi.org/10.1145/331960.331965
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.14722/NDSS.2015.23233


Systems, Languages, and Applications, pages 849–863. ACM, 2016. https:

//doi.org/10.1145/2983990.2984038.

[119] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su.

Perses: Syntax-guided program reduction. In International Conference on

Software Engineering, pages 361–371. ACM, 2018. https://doi.org/10.

1145/3180155.3180236.

[120] Yixuan Tang, Zhilei Ren, Weiqiang Kong, and He Jiang. Compiler testing: a

systematic literature analysis. Frontiers of Computer Science, 14(1):1:20, 2020.

https://doi.org/10.1007/s11704-019-8231-0.

[121] The Apache Software Foundation. Maven - welcome to Apache Maven, 2023.

https://maven.apache.org/.

[122] The Apache Software Foundation. commons-codec/BinaryCodec.java,

2023. https://github.com/apache/commons-codec/blob/4de60e/src/

main/java/org/apache/commons/codec/binary/BinaryCodec.java.

[123] The Apache Software Foundation. commons-codec/StringUtils.java,

2023. https://github.com/apache/commons-codec/blob/4de60e/src/

main/java/org/apache/commons/codec/binary/StringUtils.java.

[124] The Apache Software Foundation. commons-

math/AdamsNordsieckTransformer.java, 2023. https://github.com/

apache/commons-math/blob/dff1a0/src/main/java/org/apache/commons/

math4/ode/nonstiff/AdamsNordsieckTransformer.java.

[125] The Apache Software Foundation. commons-math/Quaternion.java,

2023. https://github.com/apache/commons-math/blob/dff1a0/src/

main/java/org/apache/commons/math4/complex/Quaternion.java.

119

https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1007/s11704-019-8231-0
https://maven.apache.org/
https://github.com/apache/commons-codec/blob/4de60e/src/main/java/org/apache/commons/codec/binary/BinaryCodec.java
https://github.com/apache/commons-codec/blob/4de60e/src/main/java/org/apache/commons/codec/binary/BinaryCodec.java
https://github.com/apache/commons-codec/blob/4de60e/src/main/java/org/apache/commons/codec/binary/StringUtils.java
https://github.com/apache/commons-codec/blob/4de60e/src/main/java/org/apache/commons/codec/binary/StringUtils.java
https://github.com/apache/commons-math/blob/dff1a0/src/main/java/org/apache/commons/math4/ode/nonstiff/AdamsNordsieckTransformer.java
https://github.com/apache/commons-math/blob/dff1a0/src/main/java/org/apache/commons/math4/ode/nonstiff/AdamsNordsieckTransformer.java
https://github.com/apache/commons-math/blob/dff1a0/src/main/java/org/apache/commons/math4/ode/nonstiff/AdamsNordsieckTransformer.java
https://github.com/apache/commons-math/blob/dff1a0/src/main/java/org/apache/commons/math4/complex/Quaternion.java
https://github.com/apache/commons-math/blob/dff1a0/src/main/java/org/apache/commons/math4/complex/Quaternion.java


[126] The Apache Software Foundation. commons-text/StrBuilder.java,

2023. https://github.com/apache/commons-text/blob/e62203/src/

main/java/org/apache/commons/text/StrBuilder.java.

[127] The JUnit Team. JUnit 5, 2023. https://junit.org/junit5/.

[128] The MITRE Corporation. CVE - CVE-2020-14792, 2022. https://cve.

mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14792.

[129] Nikolai Tillmann and Wolfram Schulte. Parameterized unit tests. In Joint

Meeting of the European Software Engineering Conference and the Sympo-

sium on the Foundations of Software Engineering, pages 253–262. ACM, 2005.

https://doi.org/10.1145/1095430.1081749.

[130] Jacob Van Geffen, Luke Nelson, Isil Dillig, Xi Wang, and Emina Torlak.

Synthesizing JIT compilers for in-kernel DSLs. In Computer Aided Ver-

ification, pages 564–586. Springer, 2020. https://doi.org/10.1007/

978-3-030-53291-8_29.

[131] Vasudev Vikram, Rohan Padhye, and Koushik Sen. Growing a test corpus with

Bonsai fuzzing. In International Conference on Software Engineering, pages

723–735. ACM, 2021. https://doi.org/10.1109/ICSE43902.2021.00072.

[132] Willem Visser, Corina S. Pundefinedsundefinedreanu, and Sarfraz Khurshid.

Test input generation with Java PathFinder. In International Symposium on

Software Testing and Analysis, pages 97–107. ACM, 2004. https://doi.org/

10.1145/1007512.1007526.

[133] Junjie Wang, Zhiyi Zhang, Shuang Liu, Xiaoning Du, and Junjie Chen. Fuz-

zJIT: Oracle-enhanced fuzzing for JavaScript engine JIT compiler. In USENIX

Security Symposium, pages 1865–1882. USENIX, 2023. https://www.usenix.

org/conference/usenixsecurity23/presentation/wang-junjie.

120

https://github.com/apache/commons-text/blob/e62203/src/main/java/org/apache/commons/text/StrBuilder.java
https://github.com/apache/commons-text/blob/e62203/src/main/java/org/apache/commons/text/StrBuilder.java
https://junit.org/junit5/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14792
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14792
https://doi.org/10.1145/1095430.1081749
https://doi.org/10.1007/978-3-030-53291-8_29
https://doi.org/10.1007/978-3-030-53291-8_29
https://doi.org/10.1109/ICSE43902.2021.00072
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.1145/1007512.1007526
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-junjie
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-junjie


[134] Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chlipala, and Zachary

Tatlock. Jitk: A trustworthy in-kernel interpreter infrastructure. In

Symposium on Operating Systems Design and Implementation, pages 33–

47. USENIX, 2014. https://www.usenix.org/conference/osdi14/

technical-sessions/presentation/wang_xi.

[135] Tao Wei, Tielei Wang, Lei Duan, and Jing Luo. INSeRT: Protect dynamic

code generation against spraying. In International Conference on Information

Science and Technology, pages 323–328. IEEE, 2011. https://doi.org/10.

1109/ICIST.2011.5765261.

[136] Mingyuan Wu, Minghai Lu, Heming Cui, Junjie Chen, Yuqun Zhang, and Ling-

ming Zhang. JITfuzz: Coverage-guided fuzzing for JVM Just-in-Time compil-

ers. In International Conference on Software Engineering, pages 56–68. IEEE,

2023. https://doi.org/10.1109/ICSE48619.2023.00017.

[137] Mingyuan Wu, Yicheng Ouyang, Minghai Lu, Junjie Chen, Yingquan Zhao,

Heming Cui, Guowei Yang, and Yuqun Zhang. SJFuzz: Seed & mutator

scheduling for JVM fuzzing. In Joint Meeting of the European Software Engi-

neering Conference and the Symposium on the Foundations of Software Engi-

neering, pages 1062–1074. ACM, 2023. https://doi.org/10.1145/3611643.

3616277.

[138] Rui Wu, Ping Chen, Bing Mao, and Li Xie. RIM: A method to defend from

JIT spraying attack. In International Conference on Availability, Reliability

and Security, pages 143–148. IEEE, 2012. https://doi.org/10.1109/ARES.

2012.11.

[139] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and under-

standing bugs in C compilers. In Programming Language Design and Imple-

mentation, pages 283–294. ACM, 2011. https://doi.org/10.1145/1993316.

1993532.

121

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wang_xi
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wang_xi
https://doi.org/10.1109/ICIST.2011.5765261
https://doi.org/10.1109/ICIST.2011.5765261
https://doi.org/10.1109/ICSE48619.2023.00017
https://doi.org/10.1145/3611643.3616277
https://doi.org/10.1145/3611643.3616277
https://doi.org/10.1109/ARES.2012.11
https://doi.org/10.1109/ARES.2012.11
https://doi.org/10.1145/1993316.1993532
https://doi.org/10.1145/1993316.1993532


[140] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. GCC bug list found

by random testing (total 79), 2021. https://embed.cs.utah.edu/csmith/

gcc-bugs.html.

[141] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. LLVM bug list found

by random testing (total 203), 2021. https://embed.cs.utah.edu/csmith/

llvm-bugs.html.

[142] Guixin Ye, Tianmin Hu, Zhanyong Tang, Zhenye Fan, Shin Tan, Hwei,

Bo Zhang, Wenxiang Qian, and Wang Zheng. A generative and mutational

approach for synthesizing bug-exposing test cases to guide compiler fuzzing. In

Joint Meeting of the European Software Engineering Conference and the Sym-

posium on the Foundations of Software Engineering, pages 1127–1139. ACM,

2023. https://doi.org/10.1145/3611643.3616332.

[143] Takahide Yoshikawa, Kouya Shimura, and Toshihiro Ozawa. Random pro-

gram generator for Java JIT compiler test system. In International Conference

on Quality Software, pages 20–23. IEEE, 2003. https://doi.org/10.1109/

QSIC.2003.1319081.

[144] Zhiqiang Zang, Nathaniel Wiatrek, Milos Gligoric, and August Shi. Com-

piler testing using template Java programs. In International Conference on

Automated Software Engineering, pages 23:1–23:13. ACM, 2022. https:

//doi.org/10.1145/3551349.3556958.

[145] Zhiqiang Zang, Aditya Thimmaiah, and Milos Gligoric. Pattern-based peep-

hole optimizations with Java JIT tests. In International Symposium on Soft-

ware Testing and Analysis, pages 64–75, 2023. https://doi.org/10.1145/

3597926.3598038.

[146] Zhiqiang Zang, Fu-Yao Yu, Nathaniel Wiatrek, Milos Gligoric, and August Shi.

JAttack: Java JIT testing using template programs. In International Confer-

122

https://embed.cs.utah.edu/csmith/gcc-bugs.html
https://embed.cs.utah.edu/csmith/gcc-bugs.html
https://embed.cs.utah.edu/csmith/llvm-bugs.html
https://embed.cs.utah.edu/csmith/llvm-bugs.html
https://doi.org/10.1145/3611643.3616332
https://doi.org/10.1109/QSIC.2003.1319081
https://doi.org/10.1109/QSIC.2003.1319081
https://doi.org/10.1145/3551349.3556958
https://doi.org/10.1145/3551349.3556958
https://doi.org/10.1145/3597926.3598038
https://doi.org/10.1145/3597926.3598038


ence on Software Engineering, Tool Demonstrations Track, pages 6–10. IEEE,

2023. https://doi.org/10.1109/ICSE-Companion58688.2023.00014.

[147] Zhiqiang Zang, Aditya Thimmaiah, and Milos Gligoric. JOG: Java JIT

peephole optimizations and tests from patterns. In International Confer-

ence on Software Engineering, Tool Demonstrations Track, page to apear, 2024.

https://doi.org/10.1145/3639478.3640040.

[148] Zhiqiang Zang, Fu-Yao Yu, Aditya Thimmaiah, August Shi, and Milos Gligoric.

Java JIT testing with template extraction. In International Symposium on the

Foundations of Software Engineering, page to appear. ACM, 2024. https:

//doi.org/10.1145/3643777.

[149] Andreas Zeller. Yesterday, my program worked. Today, it does not. Why? In

Joint Meeting of the European Software Engineering Conference and the Sym-

posium on the Foundations of Software Engineering, pages 253–267. Springer,

1999. https://doi.org/10.1145/318774.318946.

[150] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing

input. IEEE Transactions on Software Engineering, 28(2):183–200, 2002.

https://doi.org/10.1109/32.988498.

[151] Chao Zhang, Mehrdad Niknami, Kevin Zhijie Chen, Chengyu Song, Zhaofeng

Chen, and Dawn Song. JITScope: Protecting web users from control-flow

hijacking attacks. In International Conference on Computer Communica-

tions, pages 567–575. IEEE, 2015. https://doi.org/10.1109/INFOCOM.

2015.7218424.

[152] Qirun Zhang, Chengnian Sun, and Zhendong Su. Skeletal program enumer-

ation for rigorous compiler testing. In Programming Language Design and

Implementation, pages 347–361. ACM, 2017. https://doi.org/10.1145/

3140587.3062379.

123

https://doi.org/10.1109/ICSE-Companion58688.2023.00014
https://doi.org/10.1145/3639478.3640040
https://doi.org/10.1145/3643777
https://doi.org/10.1145/3643777
https://doi.org/10.1145/318774.318946
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/INFOCOM.2015.7218424
https://doi.org/10.1109/INFOCOM.2015.7218424
https://doi.org/10.1145/3140587.3062379
https://doi.org/10.1145/3140587.3062379


[153] Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu, Yuqun

Zhang, and Lingming Zhang. History-driven test program synthesis for JVM

testing. In International Conference on Software Engineering, pages 1133–

1144. ACM, 2022. https://doi.org/10.1145/3510003.3510059.

124

https://doi.org/10.1145/3510003.3510059

	List of Tables
	List of Figures
	Chapter 1: Introduction
	Chapter 2: Compiler Testing using Template Java Programs
	Introduction
	Example
	JAttack Framework
	Programming and Execution Models
	JAttack Implementation for Java
	Generation Procedure
	Optimizations for Generation
	JIT Compiler Testing Procedure

	Experiment Setup
	Evaluation Subjects
	Configuring JAttack

	Evaluation
	Performance and Optimizations
	Template Extraction
	Detected Bugs

	Discussion
	Execution-Based vs. Static Generation
	Limitations

	Conclusion

	Chapter 3: Java JIT Compiler Testing with Template Extraction
	Introduction
	Example
	LeJit Framework
	Collection
	Extraction
	Generation
	Testing
	Pruning
	Implementation

	Evaluation
	Experiment Setup
	Contribution of Major Components
	Comparison with the State-of-the-art
	Impact of Holes in Various Language Features on LeJit's Bug Detection
	Impact of Template Types on LeJit's Bug Detection
	Detected Bugs

	Limitations
	Conclusion

	Chapter 4: Related Work
	Compiler Testing in General
	Java JIT Compiler / JVM Testing
	Grammar-Based
	Mutation-Based
	Template-Based

	JIT Compiler Testing for non-Java Languages
	Test Oracles for Compiler Testing
	Test Input Generation
	JIT Compiler Verification
	Security on JIT Compilers

	Chapter 5: Future Work
	Improving Program Generation
	Optimizing Testing Procedure
	Refining Testing Results
	Testing Other Software Systems

	Chapter 6: Conclusion
	References

